期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
图的λ_4最优性和超级性的度条件
被引量:
1
1
作者
孟祥军
高敬振
《山东科学》
CAS
2010年第2期1-7,共7页
设G是有限简单无向图,使G-S每个分支的阶至少为4的边割S称为G的4阶限制边割.G的4阶限制边连通度λ4(G)是G的4阶限制边割之中最少的边数,达到最小的叫λ4边割.定义ξ4(G)=min{(U):UV(G),G[U]是4阶连通子图},此处(U)表示恰好有一个端...
设G是有限简单无向图,使G-S每个分支的阶至少为4的边割S称为G的4阶限制边割.G的4阶限制边连通度λ4(G)是G的4阶限制边割之中最少的边数,达到最小的叫λ4边割.定义ξ4(G)=min{(U):UV(G),G[U]是4阶连通子图},此处(U)表示恰好有一个端点在U中的边数.若λ4(G)=ξ4(G),则称G是λ4最优的.若任意λ4边割都孤立一个4阶连通子图,则称G是超级λ4连通的.给出图是λ4最优和超级λ4连通的度条件,并举例说明条件的最好可能性.
展开更多
关键词
图
4
阶限制边连通度
λ
4
最优
超级
λ
4
连通
下载PDF
职称材料
题名
图的λ_4最优性和超级性的度条件
被引量:
1
1
作者
孟祥军
高敬振
机构
山东师范大学数学科学学院
出处
《山东科学》
CAS
2010年第2期1-7,共7页
基金
国家自然科学基金项目(30630073)
文摘
设G是有限简单无向图,使G-S每个分支的阶至少为4的边割S称为G的4阶限制边割.G的4阶限制边连通度λ4(G)是G的4阶限制边割之中最少的边数,达到最小的叫λ4边割.定义ξ4(G)=min{(U):UV(G),G[U]是4阶连通子图},此处(U)表示恰好有一个端点在U中的边数.若λ4(G)=ξ4(G),则称G是λ4最优的.若任意λ4边割都孤立一个4阶连通子图,则称G是超级λ4连通的.给出图是λ4最优和超级λ4连通的度条件,并举例说明条件的最好可能性.
关键词
图
4
阶限制边连通度
λ
4
最优
超级
λ
4
连通
Keywords
graph
4
-restricted
edge
connectivity
λ
4
-optimality
super
-
λ
4
connection
分类号
O157.5 [理学—数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
图的λ_4最优性和超级性的度条件
孟祥军
高敬振
《山东科学》
CAS
2010
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部