The Chinese HαSolar Explorer(CHASE)is designed to test a newly developed satellite platform and conduct solar observations.The scientific payload of the satellite is an Hαimaging spectrograph(HIS),which can,for the ...The Chinese HαSolar Explorer(CHASE)is designed to test a newly developed satellite platform and conduct solar observations.The scientific payload of the satellite is an Hαimaging spectrograph(HIS),which can,for the first time,acquire full-disk spectroscopic solar observations in the Hαwaveband.This paper briefly introduces CHASE/HIS including its scientific objectives,technical parameters,scientific application system,etc.The CHASE mission is scheduled to launch in 2021.It will complement the observations by on-orbit solar spacecraft(such as SDO,IRIS,STEREO and PSP),as well as future solar missions of the Solar Orbiter and Advanced Space-based Solar Observatory(ASO-S).展开更多
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and ...A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.展开更多
We present a brief review of predictions of solar cycle maximum amplitude with a lead time of 2 years or more. It is pointed out that a precise prediction of the maximum amplitude with such a lead-time is still an ope...We present a brief review of predictions of solar cycle maximum amplitude with a lead time of 2 years or more. It is pointed out that a precise prediction of the maximum amplitude with such a lead-time is still an open question despite progress made since the 1960s. A method of prediction using statistical characteristics of solar cycles is developed: the solar,cycles are divided into two groups, a high rising velocity (HRV) group and a low rising velocity (LRV) group, depending on the rising velocity in the ascending phase for a given duration of the ascending phase. The amplitude of Solar Cycle 24 can be predicted after the start of the cycle using the formula derived in this paper. Now, about 5 years before the start of the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximum amplitude.展开更多
The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the...The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.展开更多
The running correlation coefficient between the solar cycle amplitudes and the max-max cycle lengths at a given cycle lag is found to vary roughly in a cyclical wave with the cycle number, based on the smoothed monthl...The running correlation coefficient between the solar cycle amplitudes and the max-max cycle lengths at a given cycle lag is found to vary roughly in a cyclical wave with the cycle number, based on the smoothed monthly mean Group sunspot numbers available since 1610. A running average method is proposed to predict the size and length of a solar cycle by the use of the varying trend of the coefficients. It is found that, when a condition (that the correlation becomes stronger) is satisfied, the mean prediction error (16.1) is much smaller than when the condition is not satisfied (38.7). This result can be explained by the fact that the prediction must fall on the regression line and increase the strength of the correlation. The method itself can also indicate whether the prediction is reasonable or not. To obtain a reasonable prediction, it is more important to search for a running correlation coefficient whose varying trend satisfies the proposed condition, and the result does not depend so much on the size of the correlation coefficient. As an application, the peak sunspot number of cycle 24 is estimated as 140.4 ± 15.7, and the peak as May 2012 ±11 months.展开更多
Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that t...Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that the main range of the Schwabe cycles is the periodic span from 8-year to 14-year. We make the comparison of 11-year’s phase between relative sunspot numbers and sunspot group numbers. The results show that there is some difference between two phases for the interval from 1710 to 1810, while the two phases are almost the same for the interval from 1810 to 1990.展开更多
We review the status of solar Lyαscience in anticipation of the upcoming Advanced Spacebased Solar Observatory(ASO-S)mission,planned for a late 2021(or 2022)launch.The mission carries a pair of the LyαSolar Telescop...We review the status of solar Lyαscience in anticipation of the upcoming Advanced Spacebased Solar Observatory(ASO-S)mission,planned for a late 2021(or 2022)launch.The mission carries a pair of the LyαSolar Telescopes(LST)capable of high resolution disk and off-limb imaging,which will provide the first synoptic Lyαimaging observations of the solar atmosphere.We discuss the history of Lyαimaging and latest results,and outline the open questions that ASO-S could address.ASO-S will launch at an optimal time for Lyαscience.Several other Lyαtelescopes will be in operation.We identify the synergies between ASO-S and other missions as well as serendipitous non-solar science opportunities.We conclude that ASO-S has the potential for breakthrough observations and discoveries in the chromosphere-corona interface where the Lyαemission is the major player.展开更多
High-resolution Stokes spectral data of Hα, Ca Ⅱ 8542A, and Fe 16302.5A lines for a two-ribbon microflare (TRMF) were simultaneously obtained by the THEMIS telescope on 2002 September 5. We derive the intensity, v...High-resolution Stokes spectral data of Hα, Ca Ⅱ 8542A, and Fe 16302.5A lines for a two-ribbon microflare (TRMF) were simultaneously obtained by the THEMIS telescope on 2002 September 5. We derive the intensity, velocity, and longitudinal magnetic field maps. The hard X-ray emission observed by RHESSI provides evidence of nonthermal particle acceleration in the TRMF. Using Ha and Ca Ⅱ 8542A line profiles and a non-LTE calculation, we obtain semi-empirical atmospheric models for the two brightest kernels of the TRME Our result indicates that the temperature enhancement in the chromosphere is more than 2500 K. The kinetic and radiative energies at the kernels are also estimated, resulting in an estimate of the total energy of the TRMF of about 2.4×10^29 erg. Observations indicate that the TRMF results from the low coronal magnetic reconnection following the eruption of a small fila- ment. However, the local temperature "bump" in the chromosphere presents a puzzle for such a standard flare model. A possible solution to this is discussed.展开更多
We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for t...We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle. Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2±7.5 to appear during the period from May to October 2012.展开更多
Using continuous wavelet transform, we examine the relationship between solar activity and the annual precipitation in the Beijing area. The results indicate that the annual precipitation is closely related to the var...Using continuous wavelet transform, we examine the relationship between solar activity and the annual precipitation in the Beijing area. The results indicate that the annual precipitation is closely related to the variation of sunspot numbers, and that solar activity probably plays an important role in influencing the precipitation on land.展开更多
We present simultaneous observations of three recurring jets in EUV and soft X-ray (SXR), which occurred in an active region on 2007 June 5. By comparing their morphological and kinematic characteristics in these tw...We present simultaneous observations of three recurring jets in EUV and soft X-ray (SXR), which occurred in an active region on 2007 June 5. By comparing their morphological and kinematic characteristics in these two different wavelengths, we found that EUV and SXR jets had similar locations, directions, sizes and velocities. We also analyzed their spectral properties by using six spectral lines from the EUV Imaging Spectrometer (EIS) onboard Hinode and found that these jets had temperatures from 0.05 to 2.0MK and maximum electron densities from 6.6× 10^9 to 3.4× 10^10cm^-3. For each jet, an elongated blue-shifted component and a red- shifted component at the jet base were simultaneously observed in the Fe XII A195 and the He II A256 lines. The three jets had maximum Doppler velocities from 25 to 121 km s-1 in the FexII A195 line and from 115 to 232 km s -1 in the HeII A256 line. They had maximum non-thermal velocities from 98 to 181 km s-1 in the Fe xII A195 line and from 196 to 399 km s-1 in the He II A256 line. We also examined the relationship between averaged Doppler velocities and maximum ionization temperatures of these three jets and found that averaged Doppler velocities decreased with the increase of maximum ionization temperatures. In the photosphere, magnetic flux emergences and cancelations continuously took place at the jet base. These observa- tional results were consistent with the magnetic reconnection jet model, implying that magnetic reconnection between emerging magnetic flux and ambient magnetic field occurred in the lower atmosphere.展开更多
In this present study,we have analyzed different types of X-ray solar flares(C,M,and X classes)coming out from different classes of sunspot groups(SSGs).The data which we have taken under this study cover the duration...In this present study,we have analyzed different types of X-ray solar flares(C,M,and X classes)coming out from different classes of sunspot groups(SSGs).The data which we have taken under this study cover the duration of 24 yr from 1996 to 2019.During this,we observed a total of 15015 flares(8417 in SC-23 and 6598 in SC-24)emitted from a total of 33780 active regions(21746 in SC-23 and 12034 in SC-24)with sunspot only.We defined the flaring potential or flare-production potential as the ratio of the total number of flares produced from a particular type of SSG to the total number of the same-class SSGs observed on the solar surface.Here we studied yearly changes in the flaring potential of different McIntosh class groups of sunspots in different phases of SC-23 and 24.In addition,we investigated yearly variations in the potential of producing flares by different SSGs(A,B,C,D,E,F,and H)during different phases(ascending,maximum,descending,and minimum)of SC-23 and 24.These are our findings:(1)D,E,and F SSGs have the potential of producing flares≥8 times greater than A,B,C and H SSGs;(2)The larger and more complex D,E,and F SSGs produced nearly 80%of flares in SC-23 and 24;(3)The A,B,C and H SSGs,which are smaller and simpler,produced only 20%of flares in SC-23 and 24;(4)The biggest and most complex SSGs of F-class have flaring potential 1.996 and 3.443 per SSG in SC-23 and 24,respectively.(5)The potential for producing flares in each SSG is higher in SC-24 than in SC-23,although SC-24 is a weaker cycle than SC-23.(6)The alterations in the number of flares(C+M+X)show different time profiles than the alterations in sunspot numbers during SC-23 and 24,with several peaks.(7)The SSGs of C,D,E,and H-class have the highest flaring potential in the descending phase of both SC-23 and 24.(8)F-class SSGs have the highest flaring potential in the descending phase of SC-23 but also in the maximum phase of SC-24.展开更多
The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature th...The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature that is deserved much more attentions.Here,we reported a confined two-peaked solar flare and analyzed the associated eruptions using high-quality observations from Educational Adaptive-optics Solar Telescope and Solar Dynamics Observatory.Before the flare,a magnetic flux rope(MFR)formed through partially tether-cutting reconnection between two sheared arches.The flare occurred after the MFR eruption that was confined by the overlying strong field.Interestingly,a small underlying filament immediately erupted,which was possibly destabilized by the flare ribbon.The successive eruptions were confirmed by the analysis of the emission measure and the reconnection fluxes.Therefore,we suggest that the two peaks of the confined solar flare are corresponding to two episodes of magnetic reconnection during the successive eruptions of the MFR and the underlying filament.展开更多
The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by...The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by examining the measured data of the solar cycle 23 with the prediction: different time scale components are obtained by the EMD method and multi-step predicted values are combined to reconstruct the sunspot number time series. The result is remarkably good in comparison to the predictions made by the solar dynamo and precursor approaches for cycle 23. Sunspot numbers of the coming solar cycle 24 are obtained with the data from 1848 to 2007, the maximum amplitude of the next solar cycle is predicted to be about 112 in 2011-2012.展开更多
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar ...We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic magnetographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss other regularities which can be revealed by further analysis such as possible dependence on longitude, time, and magnetic field strength, etc.展开更多
基金funded by the “Integration of Space and Ground Based Instruments” project of the China National Space Administrationthe National Natural Science Foundation of China (Grant Nos. 11673012, 11533005 and 11733003)
文摘The Chinese HαSolar Explorer(CHASE)is designed to test a newly developed satellite platform and conduct solar observations.The scientific payload of the satellite is an Hαimaging spectrograph(HIS),which can,for the first time,acquire full-disk spectroscopic solar observations in the Hαwaveband.This paper briefly introduces CHASE/HIS including its scientific objectives,technical parameters,scientific application system,etc.The CHASE mission is scheduled to launch in 2021.It will complement the observations by on-orbit solar spacecraft(such as SDO,IRIS,STEREO and PSP),as well as future solar missions of the Solar Orbiter and Advanced Space-based Solar Observatory(ASO-S).
基金the National Natural Science Foundation of China
文摘A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.
基金This work is supported by National Nature Science Foundation Project No.4999-0451Space Environmental Prediction CenterCenter for Space Science and Applied Research, CAS, China.
文摘We present a brief review of predictions of solar cycle maximum amplitude with a lead time of 2 years or more. It is pointed out that a precise prediction of the maximum amplitude with such a lead-time is still an open question despite progress made since the 1960s. A method of prediction using statistical characteristics of solar cycles is developed: the solar,cycles are divided into two groups, a high rising velocity (HRV) group and a low rising velocity (LRV) group, depending on the rising velocity in the ascending phase for a given duration of the ascending phase. The amplitude of Solar Cycle 24 can be predicted after the start of the cycle using the formula derived in this paper. Now, about 5 years before the start of the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximum amplitude.
基金supported by the National Natural Science Foundation of China(NSFC)under Grants 11825301,12003016,12073077the National Key R&D Program of China No.2021YFA0718600+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences with the Grant No.XDA15018400the Youth Innovation Promotion Association of CAS(2023061)。
文摘The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.
基金the Chinese Academy of Sciences through Grant KGCX3-SYW-403-10the NSFC through Grants 10733020 and 10673017the National Ministry of Science and Technology through Grant 2006CB806307
文摘The running correlation coefficient between the solar cycle amplitudes and the max-max cycle lengths at a given cycle lag is found to vary roughly in a cyclical wave with the cycle number, based on the smoothed monthly mean Group sunspot numbers available since 1610. A running average method is proposed to predict the size and length of a solar cycle by the use of the varying trend of the coefficients. It is found that, when a condition (that the correlation becomes stronger) is satisfied, the mean prediction error (16.1) is much smaller than when the condition is not satisfied (38.7). This result can be explained by the fact that the prediction must fall on the regression line and increase the strength of the correlation. The method itself can also indicate whether the prediction is reasonable or not. To obtain a reasonable prediction, it is more important to search for a running correlation coefficient whose varying trend satisfies the proposed condition, and the result does not depend so much on the size of the correlation coefficient. As an application, the peak sunspot number of cycle 24 is estimated as 140.4 ± 15.7, and the peak as May 2012 ±11 months.
基金the National Natural Science Foundation of China.
文摘Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that the main range of the Schwabe cycles is the periodic span from 8-year to 14-year. We make the comparison of 11-year’s phase between relative sunspot numbers and sunspot group numbers. The results show that there is some difference between two phases for the interval from 1710 to 1810, while the two phases are almost the same for the interval from 1810 to 1990.
基金supported by NRL (Grant N00173-16-1-G029)funded by the NASA H-TiDeS program under NNG12WF67I
文摘We review the status of solar Lyαscience in anticipation of the upcoming Advanced Spacebased Solar Observatory(ASO-S)mission,planned for a late 2021(or 2022)launch.The mission carries a pair of the LyαSolar Telescopes(LST)capable of high resolution disk and off-limb imaging,which will provide the first synoptic Lyαimaging observations of the solar atmosphere.We discuss the history of Lyαimaging and latest results,and outline the open questions that ASO-S could address.ASO-S will launch at an optimal time for Lyαscience.Several other Lyαtelescopes will be in operation.We identify the synergies between ASO-S and other missions as well as serendipitous non-solar science opportunities.We conclude that ASO-S has the potential for breakthrough observations and discoveries in the chromosphere-corona interface where the Lyαemission is the major player.
基金Supported by the National Natural Science Foundation of China(NSFC) (Grant Nos. 10221001, 10878002, 10403003, 10620150099,10610099, 10933003 and 10673004)a grant form the 973 project 2006CB806302
文摘High-resolution Stokes spectral data of Hα, Ca Ⅱ 8542A, and Fe 16302.5A lines for a two-ribbon microflare (TRMF) were simultaneously obtained by the THEMIS telescope on 2002 September 5. We derive the intensity, velocity, and longitudinal magnetic field maps. The hard X-ray emission observed by RHESSI provides evidence of nonthermal particle acceleration in the TRMF. Using Ha and Ca Ⅱ 8542A line profiles and a non-LTE calculation, we obtain semi-empirical atmospheric models for the two brightest kernels of the TRME Our result indicates that the temperature enhancement in the chromosphere is more than 2500 K. The kinetic and radiative energies at the kernels are also estimated, resulting in an estimate of the total energy of the TRMF of about 2.4×10^29 erg. Observations indicate that the TRMF results from the low coronal magnetic reconnection following the eruption of a small fila- ment. However, the local temperature "bump" in the chromosphere presents a puzzle for such a standard flare model. A possible solution to this is discussed.
基金Supported by the National Natural Science Foundation of Chinasupported by NSFC through grants 10673017 and 10733020National Basic Research Program of China through grant 2006CB806307.
文摘We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle. Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2±7.5 to appear during the period from May to October 2012.
基金Supported by the National Natural Science Foundation of China
文摘Using continuous wavelet transform, we examine the relationship between solar activity and the annual precipitation in the Beijing area. The results indicate that the annual precipitation is closely related to the variation of sunspot numbers, and that solar activity probably plays an important role in influencing the precipitation on land.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 10973038 and 40636031)supported by the National Basic Research Program of China (973 Program+1 种基金 Grant No. 2011CB811403)the Scientific Application Foundation of Yunnan Province (Grant Nos. 2007A112M and 2007A115M)
文摘We present simultaneous observations of three recurring jets in EUV and soft X-ray (SXR), which occurred in an active region on 2007 June 5. By comparing their morphological and kinematic characteristics in these two different wavelengths, we found that EUV and SXR jets had similar locations, directions, sizes and velocities. We also analyzed their spectral properties by using six spectral lines from the EUV Imaging Spectrometer (EIS) onboard Hinode and found that these jets had temperatures from 0.05 to 2.0MK and maximum electron densities from 6.6× 10^9 to 3.4× 10^10cm^-3. For each jet, an elongated blue-shifted component and a red- shifted component at the jet base were simultaneously observed in the Fe XII A195 and the He II A256 lines. The three jets had maximum Doppler velocities from 25 to 121 km s-1 in the FexII A195 line and from 115 to 232 km s -1 in the HeII A256 line. They had maximum non-thermal velocities from 98 to 181 km s-1 in the Fe xII A195 line and from 196 to 399 km s-1 in the He II A256 line. We also examined the relationship between averaged Doppler velocities and maximum ionization temperatures of these three jets and found that averaged Doppler velocities decreased with the increase of maximum ionization temperatures. In the photosphere, magnetic flux emergences and cancelations continuously took place at the jet base. These observa- tional results were consistent with the magnetic reconnection jet model, implying that magnetic reconnection between emerging magnetic flux and ambient magnetic field occurred in the lower atmosphere.
基金partially supported by the Institute of Eminence(Io E)Program(Scheme No:6031)of BHU,Varanasi。
文摘In this present study,we have analyzed different types of X-ray solar flares(C,M,and X classes)coming out from different classes of sunspot groups(SSGs).The data which we have taken under this study cover the duration of 24 yr from 1996 to 2019.During this,we observed a total of 15015 flares(8417 in SC-23 and 6598 in SC-24)emitted from a total of 33780 active regions(21746 in SC-23 and 12034 in SC-24)with sunspot only.We defined the flaring potential or flare-production potential as the ratio of the total number of flares produced from a particular type of SSG to the total number of the same-class SSGs observed on the solar surface.Here we studied yearly changes in the flaring potential of different McIntosh class groups of sunspots in different phases of SC-23 and 24.In addition,we investigated yearly variations in the potential of producing flares by different SSGs(A,B,C,D,E,F,and H)during different phases(ascending,maximum,descending,and minimum)of SC-23 and 24.These are our findings:(1)D,E,and F SSGs have the potential of producing flares≥8 times greater than A,B,C and H SSGs;(2)The larger and more complex D,E,and F SSGs produced nearly 80%of flares in SC-23 and 24;(3)The A,B,C and H SSGs,which are smaller and simpler,produced only 20%of flares in SC-23 and 24;(4)The biggest and most complex SSGs of F-class have flaring potential 1.996 and 3.443 per SSG in SC-23 and 24,respectively.(5)The potential for producing flares in each SSG is higher in SC-24 than in SC-23,although SC-24 is a weaker cycle than SC-23.(6)The alterations in the number of flares(C+M+X)show different time profiles than the alterations in sunspot numbers during SC-23 and 24,with several peaks.(7)The SSGs of C,D,E,and H-class have the highest flaring potential in the descending phase of both SC-23 and 24.(8)F-class SSGs have the highest flaring potential in the descending phase of SC-23 but also in the maximum phase of SC-24.
基金supported by grants of the National Natural Foundation of China(NSFC12073016)the open topic of the Yunnan Key Laboratory of Solar Physics and Space Science(YNSPCC202217)。
文摘The solar flare is one of the most violent explosions,and can disturb the near-Earth space weather.Except for commonly single-peaked solar flares in soft X-ray,some special flares show intriguing a two-peak feature that is deserved much more attentions.Here,we reported a confined two-peaked solar flare and analyzed the associated eruptions using high-quality observations from Educational Adaptive-optics Solar Telescope and Solar Dynamics Observatory.Before the flare,a magnetic flux rope(MFR)formed through partially tether-cutting reconnection between two sheared arches.The flare occurred after the MFR eruption that was confined by the overlying strong field.Interestingly,a small underlying filament immediately erupted,which was possibly destabilized by the flare ribbon.The successive eruptions were confirmed by the analysis of the emission measure and the reconnection fluxes.Therefore,we suggest that the two peaks of the confined solar flare are corresponding to two episodes of magnetic reconnection during the successive eruptions of the MFR and the underlying filament.
文摘The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by examining the measured data of the solar cycle 23 with the prediction: different time scale components are obtained by the EMD method and multi-step predicted values are combined to reconstruct the sunspot number time series. The result is remarkably good in comparison to the predictions made by the solar dynamo and precursor approaches for cycle 23. Sunspot numbers of the coming solar cycle 24 are obtained with the data from 1848 to 2007, the maximum amplitude of the next solar cycle is predicted to be about 112 in 2011-2012.
基金Supported by the National Natural Science Foundation of China.
文摘We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic magnetographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss other regularities which can be revealed by further analysis such as possible dependence on longitude, time, and magnetic field strength, etc.