The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is col... The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is colder in summer, the convective activities may be weak around the South China Sea and the Philippines. As a consequence, the subtropical high shifted southward. Therefore, a drought may be caused in the Indo-China peninsula and in the South China. Moreover, in midsummer the subtropical high is weak over the Yangtze River valley and Huaihe River valley, and the flood may be caused in the area from the Yangtze River valley to Huaihe River valley. On the contrary, in the decaying stage of ENSO. the convective activities may be strong around the Philippines, and the subtropical high shifted northward, a drought may be caused in the Yangtze River valley and Huaihe River valley.展开更多
Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon...Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon include strong (weak) northerly winds along coastal East Asia, cold (warm) East Asian continent and surrounding sea and warm (cold) ocean from the subtropical central Pacific to the trop-ical western Pacific, high (low) pressure in East Asian continent and low (high) pressure in the adjacent ocean and deep (weak) East Asian trough at 500 hPa. These interannual variations are shown to be closely connected to the SST anomaly in the tropical Pacific, both in the western and eastern Pacific. The results suggest that the strength of the EAWM is mainly influenced by the processes associated with the SST anom-aly over the tropical Pacific. The EAWM generally becomes weak when there is a positive SST anomaly in the tropical eastern Pacific (El Ni?o), and it becomes strong when there is a negative SST anomaly (La Ni?a). Moreover, the SST anomaly in the South China Sea is found to be closely related to the EAWM and may persist to the following summer. Both the circulation at 850 hPa and the rainfall in China confirm the connection between the EAWM and the following East Asian summer monsoon. The possible reason for the recent 1998 summer flood in China is briefly discussed too. Key words East Asian winter monsoon - Interannual variability - SST - Summer monsoon This study was supported by “ National Key Programme for Developing Basic Sciences” G1998040900 part 1, and by key project (KZ 952-S1-404) of Chinese Academy of Sciences.展开更多
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is...Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.展开更多
The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an i...The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an interdecadal variability in the mid-1970s. The intensity of the East Asia monsoon is weaker after this transition. Moreover the intensity and location of subtropical high that is an important component in East Asia monsoon system also shows interdecadal variation obviously. It is the interdecadal variation in atmospheric circulation that causes the drought over North China and flooding along the middle and lower reaches of the Yangtze River after the mid-1970s.展开更多
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is f...Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).展开更多
Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought f...Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought frequency. According to the data, the temporal and spatial characteristics of the extreme drought frequency in inter-annual, inter-decadal, summer monsoon period and winter monsoon period are analyzed. The results are indicated as follows. (1) In general, the southwestern Sichuan Basin, southern Hengduan Mountains, southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years. As for the decadal change, from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend, while the 1990s is the wettest decade and the whole area is turning wet. In the 2000s, the extreme drought frequency rises quickly, but the regional differences reduce. (2) During summer monsoon period, the extreme drought frequency is growing, which generally occurs in the high mountains around the Sichuan Basin, most parts of Guangxi and "the broom-shaped mountains" in Yunnan. It is distinct that the altitude has impacts on the ex- treme drought frequency; during winter monsoon period, the area is relatively wet and the extreme drought frequency is decreasing. (3) During summer monsoon period, the abrupt change is observed in 2003, whereas the abrupt change during winter monsoon period is in 1989. The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods. The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.展开更多
Guliya ice core records, high lake-level records in the Qinghai-Xizang Plateau and at its north side as well as vegetation succession records indicated that during the period of 30-40 kaBP, namely the later age of the...Guliya ice core records, high lake-level records in the Qinghai-Xizang Plateau and at its north side as well as vegetation succession records indicated that during the period of 30-40 kaBP, namely the later age of the megainterstadial of last glacial period, or the marine oxygen isotope stage 3, the climate of the Qinghai-Xizang Plateau was exceptionally warm and humid, the temperature was 2-4℃ higher than today and the precipitation was 40% to over 100%展开更多
This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, s...This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR reanalysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979-1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China.展开更多
文摘 The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is colder in summer, the convective activities may be weak around the South China Sea and the Philippines. As a consequence, the subtropical high shifted southward. Therefore, a drought may be caused in the Indo-China peninsula and in the South China. Moreover, in midsummer the subtropical high is weak over the Yangtze River valley and Huaihe River valley, and the flood may be caused in the area from the Yangtze River valley to Huaihe River valley. On the contrary, in the decaying stage of ENSO. the convective activities may be strong around the Philippines, and the subtropical high shifted northward, a drought may be caused in the Yangtze River valley and Huaihe River valley.
文摘Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon include strong (weak) northerly winds along coastal East Asia, cold (warm) East Asian continent and surrounding sea and warm (cold) ocean from the subtropical central Pacific to the trop-ical western Pacific, high (low) pressure in East Asian continent and low (high) pressure in the adjacent ocean and deep (weak) East Asian trough at 500 hPa. These interannual variations are shown to be closely connected to the SST anomaly in the tropical Pacific, both in the western and eastern Pacific. The results suggest that the strength of the EAWM is mainly influenced by the processes associated with the SST anom-aly over the tropical Pacific. The EAWM generally becomes weak when there is a positive SST anomaly in the tropical eastern Pacific (El Ni?o), and it becomes strong when there is a negative SST anomaly (La Ni?a). Moreover, the SST anomaly in the South China Sea is found to be closely related to the EAWM and may persist to the following summer. Both the circulation at 850 hPa and the rainfall in China confirm the connection between the EAWM and the following East Asian summer monsoon. The possible reason for the recent 1998 summer flood in China is briefly discussed too. Key words East Asian winter monsoon - Interannual variability - SST - Summer monsoon This study was supported by “ National Key Programme for Developing Basic Sciences” G1998040900 part 1, and by key project (KZ 952-S1-404) of Chinese Academy of Sciences.
基金supported jointly by the National Key Basic Research Development Program(Grant No.G1999043403)the Knowledge Innovation Project of the Chinese Academy of Sciences(CAS)(Grant No.KZCX3-SW-218)+1 种基金the National Natural Science Foundation of China project for young scientists fund(No.40305012) the Western Project of the CAS (KZCX1-10-07).
文摘Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.
基金Natural Science Foundation of China (40365001) Intramural research program of Yunnan University (2002Q014ZH)
文摘The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an interdecadal variability in the mid-1970s. The intensity of the East Asia monsoon is weaker after this transition. Moreover the intensity and location of subtropical high that is an important component in East Asia monsoon system also shows interdecadal variation obviously. It is the interdecadal variation in atmospheric circulation that causes the drought over North China and flooding along the middle and lower reaches of the Yangtze River after the mid-1970s.
文摘Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).
基金National Natural Science Foundation of China,No.41161012,Program for New Century Excellent Talents in University from the Ministry of Education of China,No.NCET-10-0019,Basic Scientific Research Foundation in University of Gansu Province
文摘Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought frequency. According to the data, the temporal and spatial characteristics of the extreme drought frequency in inter-annual, inter-decadal, summer monsoon period and winter monsoon period are analyzed. The results are indicated as follows. (1) In general, the southwestern Sichuan Basin, southern Hengduan Mountains, southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years. As for the decadal change, from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend, while the 1990s is the wettest decade and the whole area is turning wet. In the 2000s, the extreme drought frequency rises quickly, but the regional differences reduce. (2) During summer monsoon period, the extreme drought frequency is growing, which generally occurs in the high mountains around the Sichuan Basin, most parts of Guangxi and "the broom-shaped mountains" in Yunnan. It is distinct that the altitude has impacts on the ex- treme drought frequency; during winter monsoon period, the area is relatively wet and the extreme drought frequency is decreasing. (3) During summer monsoon period, the abrupt change is observed in 2003, whereas the abrupt change during winter monsoon period is in 1989. The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods. The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.
文摘Guliya ice core records, high lake-level records in the Qinghai-Xizang Plateau and at its north side as well as vegetation succession records indicated that during the period of 30-40 kaBP, namely the later age of the megainterstadial of last glacial period, or the marine oxygen isotope stage 3, the climate of the Qinghai-Xizang Plateau was exceptionally warm and humid, the temperature was 2-4℃ higher than today and the precipitation was 40% to over 100%
基金supported by the National Basic Research Program of China (973 Pro-gram) (Grant No. 2007CB411505)the National Key Basic Research and Development Project of China (Grant No.2004CB418300)+1 种基金Coordinated Observation and Prediction of Earth System (COPES) project (GYHY200706005)the National Natural Science Foundation of China (GrantNo. 40875052)
文摘This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR reanalysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979-1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China.