期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
氯代芳香族化合物结构电化学还原电位定量关系的贝叶斯规整化BP神经网络模型 被引量:7
1
作者 孙伟 曾光明 +1 位作者 魏万之 黄国和 《环境科学》 EI CAS CSCD 北大核心 2005年第2期21-27,共7页
将贝叶斯规整化误差反向传播神经网络 (BRBPNN)应用于环境领域的QSPR模型 .采用ChemOffice2 0 0 4内置的MOPAC 2 0 0 0计算了 6种量子化学参数 (分子最高占据能EHOMO、分子最低占据能ELUMO、分子生成热HF、分子偶极矩DIP、分子的电子能... 将贝叶斯规整化误差反向传播神经网络 (BRBPNN)应用于环境领域的QSPR模型 .采用ChemOffice2 0 0 4内置的MOPAC 2 0 0 0计算了 6种量子化学参数 (分子最高占据能EHOMO、分子最低占据能ELUMO、分子生成热HF、分子偶极矩DIP、分子的电子能量EE和分子的核核排斥能CCR)以及氯原子数 (Cl)和分子量 (MW ) ,建立了 87种氯代芳香族化合物结构与电化学还原电位定量关系的BRBPNN模型 .最优网络模型结构为 6 2 0 1,其电化学还原电位的拟合及预测能力明显优于逐步线性回归模型 ,其训练集和预测集的相关系数平方和均方根误差 (MSE)分别达到 0. 999和 0 . 0 0 0 10 5 ,0. 96 5和 0. 0 0 15 9.最优模型输入节点到隐含层权重平方和的分布规律揭示出各种描述符对还原电位的影响大小依次为 :ELUMO>EHOMO>HF >CCR>EE >DIP .由散点图揭示出影响为正有EE ;影响为负有ELUMO,HF ,DIP ;影响无明显正负性的有EHOMO,CCR .结果表明 ,贝叶斯规整化大大方便了网络规整化参数选择 ,保证了网络的优良概括能力和稳健性 .本研究对氯代芳香族化合物采用电化学处理的适用性以及分析相应电化学降解机理提供了依据 . 展开更多
关键词 氯代芳香族化合物 QSPR 还原电位 贝叶斯规整化神经网络 权重平方和
下载PDF
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
2
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A Bayesian regularized BP neural network model sum of square weights
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部