An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalan...An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.展开更多
为了研究在瞬态冲击(突加不平衡)下弹性环挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)对转子系统突增振动的抑制效果,设计并搭建带ERSFD的转子动力学实验台,开展突加不平衡动力学实验,获取阻尼器供油和不供油下转子系统升...为了研究在瞬态冲击(突加不平衡)下弹性环挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)对转子系统突增振动的抑制效果,设计并搭建带ERSFD的转子动力学实验台,开展突加不平衡动力学实验,获取阻尼器供油和不供油下转子系统升速及降速过程中的振动响应规律。结果表明ERSFD供油后有效地抑制了突加不平衡引起的瞬态响应,降低了突加不平衡引起的额外振动74.39%,同时抑制了转子经过临界转速的基频振动(幅值最大降低了62.18%);ERSFD供油后会在转子系统中引入额外的刚度和阻尼,其综合效果表现为转子的临界转速较ERSFD不供油的状态下,1阶临界转速降低2.39%。展开更多
基金Supported by the National Natural Science Foundation of China (No. 50635010) and the National High Technology Research and Development Program of China ( No. 2007AA04Z422 ).
文摘An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.
文摘为了研究在瞬态冲击(突加不平衡)下弹性环挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)对转子系统突增振动的抑制效果,设计并搭建带ERSFD的转子动力学实验台,开展突加不平衡动力学实验,获取阻尼器供油和不供油下转子系统升速及降速过程中的振动响应规律。结果表明ERSFD供油后有效地抑制了突加不平衡引起的瞬态响应,降低了突加不平衡引起的额外振动74.39%,同时抑制了转子经过临界转速的基频振动(幅值最大降低了62.18%);ERSFD供油后会在转子系统中引入额外的刚度和阻尼,其综合效果表现为转子的临界转速较ERSFD不供油的状态下,1阶临界转速降低2.39%。