Ferrite features in the simulated transition zone welded with CaF_(2)-SiO_(2)-MnO fluxes containing various MnO contents have been investigated.Confocal laser scanning microscopy has been applied to simulate the therm...Ferrite features in the simulated transition zone welded with CaF_(2)-SiO_(2)-MnO fluxes containing various MnO contents have been investigated.Confocal laser scanning microscopy has been applied to simulate the thermal cycling of the transition zone and the phase transformations during cooling have been in-situ observed.It has been found that the appearance temperature for ferrite side plate decreases with increasing Mn content in the weld metals caused by MnO content increasing.Meanwhile,growth rates for both ferrite side plate and acicular ferrite are significantly enhanced with a higher Mn content of weld metal.Furthermore,from the statistical fractions of salient microstructures,for all samples,the acicular ferrite,grain boundary ferrite,and polygonal ferrite take over more than 90%.It has also been demonstrated that with the increase in Mn content,the ferrite side plate fraction increases slightly from 5%to 10%and the acicular ferrite fraction shows a tendency of first increasing and then decreasing,which experiences the maximum with the flux containing 30 wt.%MnO.This phenomenon is believed to be controlled by the O and Mn contents in weld metals synergistically.展开更多
SAW308L submerged arc welding wire and SJ601A submerged arc welding flux were selected to weld the 12 mm 08Cr19MnNi3Cu2N low nickel and high nitrogen austenitic stainless steel plates with three different welding heat...SAW308L submerged arc welding wire and SJ601A submerged arc welding flux were selected to weld the 12 mm 08Cr19MnNi3Cu2N low nickel and high nitrogen austenitic stainless steel plates with three different welding heat input,and microstructure,tensile properties,microhardness and corrosion properties of the welded joints were studied.The results show that no defects are found in the three groups of welded joints,and the welded joints have better performance.The tensile strength of 08Cr19MnNi3Cu2N stainless steel welded joints with different heat input is slightly lower than that of the base metal,and fracture occurs in the weld zone,and the hardness of the weld zone is lower than that of the base metal.The weld microstructure of stainless steel welded joints with different heat input is composed of austenite+δferrite,and ferrite is uniformly distributed in austenite.With the increase of the welding heat input,the ferrite content in the weld zone decrease gradually,the grain size in the thermal affected zone increase gradually,and the impact toughness reduce.展开更多
Fused ternary CaF_(2)–SiO_(2)–MnO fluxes have been manufactured and applied to join EH36 shipbuilding steel under high heat input submerged arc welding.Five fluxes have been designed to clarify the effect of MnO con...Fused ternary CaF_(2)–SiO_(2)–MnO fluxes have been manufactured and applied to join EH36 shipbuilding steel under high heat input submerged arc welding.Five fluxes have been designed to clarify the effect of MnO content in CaF_(2)–SiO_(2)–MnO flux on the impact toughness of the weld metal,with the added amount of MnO from 10 to 50 wt.%at the expense of CaF_(2).With the increase in MnO content,the Charpy impact energy increases first and then decreases,experiencing a maximum value at 30 wt.%MnO.Microstructure of the weld metals has also been studied to account for impact toughness variations.It has been demonstrated that the highest acicular ferrite volume fraction in the weld metal is achieved at 30 wt.%MnO,which is concurrent to the maximum value of Charpy impact energy.It is believed that the Mn and O content variations in the weld metal contribute synergistically to such an interesting phenomenon.展开更多
Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel.One case only involved the surface tension model,and another one involved both the surface tension mo...Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel.One case only involved the surface tension model,and another one involved both the surface tension model and the interface tension model.The role of interface tension during welding is revealed,and the evolution of molten pool morphology is understood by comparing the surface temperature distribution,surface tension and interface tension distribution,and the streamline of the molten pool for the two cases.When the interface tension model is disregarded,a flow conducive to the outward expansion is formed in the surface area of the molten pool,resulting in a small weld depth-to-width ratio.After applying the interface tension model,the expanding outward flow is restrained,which leads to a deep penetration morphology with a large weld depth-to-width ratio due to the inward flow governed by the Marangoni forces.The simulation results involving the interface tension model have been verified with satisfactory predictability.展开更多
In order to solve the problems of excess ovality and cross-section distortion of longitudinally submerged arc welding pipes after forming,a new three-roller continuous setting round process was proposed.This process c...In order to solve the problems of excess ovality and cross-section distortion of longitudinally submerged arc welding pipes after forming,a new three-roller continuous setting round process was proposed.This process can be divided into three stages:loading stage,roll bending stage and unloading stage.Based on the discretization idea,the mechanical model of the primary statically indeterminate problem of the longitudinally submerged arc welding pipes at the roll bending stage was established,and the deformation response was obtained.The simulation and theoretical results show that there are three positive bending regions and three reverse bending regions along the circumference of the pipe.The loading force of each roller shows growth,stability and downward trend with time.The error between the theoretical fitting curve and the simulated data point is very small,and the simulation results verify the reliability of the theoretical calculation.The experimental results show that the residual ovality decreases with the increase of the reduction,and the reduction of the turning point is the optimum reduction.In addition,the residual ovality of the pipe is less than 0.7%without cross-section distortion,which verifies the feasibility of this process.展开更多
Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subseq...Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.展开更多
The purpose of this study is to reveal the microstructure and mechanical properties of friction stir welding(FSW)joints prepared in water/air.For comparable analysis,the submerged FSW(SFSW)and conventional FSW are bot...The purpose of this study is to reveal the microstructure and mechanical properties of friction stir welding(FSW)joints prepared in water/air.For comparable analysis,the submerged FSW(SFSW)and conventional FSW are both conducted on 6061-T6 aluminum alloy plates at the combination rotation speed of 800 r/min and the traverse rate of 50 mm/min.The results show that a greatest grain refinement is achieved by SFSW,which is remarkably smaller than that of the base material(BM)and air FSW(AFSW)samples,leading to a significant improvement of tensile strength from 202.5 MPa in the AFSW sample to 232 MPa in the SFSW sample.展开更多
The mechanism of dephosphization. and desulphurization in melting pool during submerged are welding has been investigated by experiments and theoretical analyses. it is found that the dephosphorization and desulphuriz...The mechanism of dephosphization. and desulphurization in melting pool during submerged are welding has been investigated by experiments and theoretical analyses. it is found that the dephosphorization and desulphurization are mainly done by the metallurgical reactions of forming phosphates and sulphates respectively.and there is a limit for the dephosphorization and desulphurization in the melting pool. The limit value depends on the basicity of flux as well as the contents of phosphorus and sulphur in the wire and the base metal. For high basicity fluxes of B1≥2.5, the limit value of sulphur in weld metal can be lower than in the wire or can be close tO that in the flux according to the content of sulphur in wire or flux. and the limit value of phosphorus is about 0.010% ±0. 002.展开更多
基金the Spring Sunshine Plan(Chunhui)Research Project of Ministry of Education of China(Grant No.HZKY20220437)the State Key Laboratory of Refractories and Metallurgy(Grant No.G202206)+1 种基金the National Natural Science FoundationofChina(Grant Nos.U20A20277 and 52150610494)the National Key Research and Development Program of China(Grant No.2022YFE0123300).
文摘Ferrite features in the simulated transition zone welded with CaF_(2)-SiO_(2)-MnO fluxes containing various MnO contents have been investigated.Confocal laser scanning microscopy has been applied to simulate the thermal cycling of the transition zone and the phase transformations during cooling have been in-situ observed.It has been found that the appearance temperature for ferrite side plate decreases with increasing Mn content in the weld metals caused by MnO content increasing.Meanwhile,growth rates for both ferrite side plate and acicular ferrite are significantly enhanced with a higher Mn content of weld metal.Furthermore,from the statistical fractions of salient microstructures,for all samples,the acicular ferrite,grain boundary ferrite,and polygonal ferrite take over more than 90%.It has also been demonstrated that with the increase in Mn content,the ferrite side plate fraction increases slightly from 5%to 10%and the acicular ferrite fraction shows a tendency of first increasing and then decreasing,which experiences the maximum with the flux containing 30 wt.%MnO.This phenomenon is believed to be controlled by the O and Mn contents in weld metals synergistically.
文摘SAW308L submerged arc welding wire and SJ601A submerged arc welding flux were selected to weld the 12 mm 08Cr19MnNi3Cu2N low nickel and high nitrogen austenitic stainless steel plates with three different welding heat input,and microstructure,tensile properties,microhardness and corrosion properties of the welded joints were studied.The results show that no defects are found in the three groups of welded joints,and the welded joints have better performance.The tensile strength of 08Cr19MnNi3Cu2N stainless steel welded joints with different heat input is slightly lower than that of the base metal,and fracture occurs in the weld zone,and the hardness of the weld zone is lower than that of the base metal.The weld microstructure of stainless steel welded joints with different heat input is composed of austenite+δferrite,and ferrite is uniformly distributed in austenite.With the increase of the welding heat input,the ferrite content in the weld zone decrease gradually,the grain size in the thermal affected zone increase gradually,and the impact toughness reduce.
基金The authors sincerely thank the State Key Laboratory of Refractories and Metallurgy(Grant No.G202206)National Natural Science Foundation of China(Grant Nos.U20A20277 and 52150610494)National Key Research and Development Program of China(Grant No.2022YFE0123300).
文摘Fused ternary CaF_(2)–SiO_(2)–MnO fluxes have been manufactured and applied to join EH36 shipbuilding steel under high heat input submerged arc welding.Five fluxes have been designed to clarify the effect of MnO content in CaF_(2)–SiO_(2)–MnO flux on the impact toughness of the weld metal,with the added amount of MnO from 10 to 50 wt.%at the expense of CaF_(2).With the increase in MnO content,the Charpy impact energy increases first and then decreases,experiencing a maximum value at 30 wt.%MnO.Microstructure of the weld metals has also been studied to account for impact toughness variations.It has been demonstrated that the highest acicular ferrite volume fraction in the weld metal is achieved at 30 wt.%MnO,which is concurrent to the maximum value of Charpy impact energy.It is believed that the Mn and O content variations in the weld metal contribute synergistically to such an interesting phenomenon.
基金The authors sincerely thank the National Natural Science Foundation of China(Grant Nos.U20A20277,52150610494,52104295,52011530180 and 52050410341)Research Fund for Central Universities(Grant Nos.N2125016 and N2025025)Young Elite Scientists Sponsorship Program by CAST(YESS)(Grant No.2021-2023QNRC001).
文摘Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel.One case only involved the surface tension model,and another one involved both the surface tension model and the interface tension model.The role of interface tension during welding is revealed,and the evolution of molten pool morphology is understood by comparing the surface temperature distribution,surface tension and interface tension distribution,and the streamline of the molten pool for the two cases.When the interface tension model is disregarded,a flow conducive to the outward expansion is formed in the surface area of the molten pool,resulting in a small weld depth-to-width ratio.After applying the interface tension model,the expanding outward flow is restrained,which leads to a deep penetration morphology with a large weld depth-to-width ratio due to the inward flow governed by the Marangoni forces.The simulation results involving the interface tension model have been verified with satisfactory predictability.
基金supported by the National Natural Science Foundation of China (Nos. 52005431, 51705449 and 51975509)the Natural Science Foundation of Hebei Province of China (No. E2020203086)the National Major Science and Technology Projects of China (No. 2018ZX04007002)
文摘In order to solve the problems of excess ovality and cross-section distortion of longitudinally submerged arc welding pipes after forming,a new three-roller continuous setting round process was proposed.This process can be divided into three stages:loading stage,roll bending stage and unloading stage.Based on the discretization idea,the mechanical model of the primary statically indeterminate problem of the longitudinally submerged arc welding pipes at the roll bending stage was established,and the deformation response was obtained.The simulation and theoretical results show that there are three positive bending regions and three reverse bending regions along the circumference of the pipe.The loading force of each roller shows growth,stability and downward trend with time.The error between the theoretical fitting curve and the simulated data point is very small,and the simulation results verify the reliability of the theoretical calculation.The experimental results show that the residual ovality decreases with the increase of the reduction,and the reduction of the turning point is the optimum reduction.In addition,the residual ovality of the pipe is less than 0.7%without cross-section distortion,which verifies the feasibility of this process.
基金Supported by the Indian Institute of Technology Guwahati under Grant No:SG/ME/PB/P/01
文摘Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.
文摘The purpose of this study is to reveal the microstructure and mechanical properties of friction stir welding(FSW)joints prepared in water/air.For comparable analysis,the submerged FSW(SFSW)and conventional FSW are both conducted on 6061-T6 aluminum alloy plates at the combination rotation speed of 800 r/min and the traverse rate of 50 mm/min.The results show that a greatest grain refinement is achieved by SFSW,which is remarkably smaller than that of the base material(BM)and air FSW(AFSW)samples,leading to a significant improvement of tensile strength from 202.5 MPa in the AFSW sample to 232 MPa in the SFSW sample.
文摘The mechanism of dephosphization. and desulphurization in melting pool during submerged are welding has been investigated by experiments and theoretical analyses. it is found that the dephosphorization and desulphurization are mainly done by the metallurgical reactions of forming phosphates and sulphates respectively.and there is a limit for the dephosphorization and desulphurization in the melting pool. The limit value depends on the basicity of flux as well as the contents of phosphorus and sulphur in the wire and the base metal. For high basicity fluxes of B1≥2.5, the limit value of sulphur in weld metal can be lower than in the wire or can be close tO that in the flux according to the content of sulphur in wire or flux. and the limit value of phosphorus is about 0.010% ±0. 002.