针对某机床结构薄弱件立柱的结构优化设计,提出了一种基于拓扑优化、筋板形式选择与布局以及尺寸优化的结构设计方法。首先利用有限元法(finite element analysis,FEA)对机床整机进行动力学分析,模态分析与谐响应分析结果表明立柱为影...针对某机床结构薄弱件立柱的结构优化设计,提出了一种基于拓扑优化、筋板形式选择与布局以及尺寸优化的结构设计方法。首先利用有限元法(finite element analysis,FEA)对机床整机进行动力学分析,模态分析与谐响应分析结果表明立柱为影响整机动态性能的关键结构件。然后以立柱结构为优化目标,对立柱进行拓扑优化,根据拓扑优化的材料分布情况设计了立柱的最优基本结构形式,再通过选择抗弯、抗扭刚度较好的W类型筋板进行布局与尺寸优化,得到了最终的立柱优化结构。最后对优化的立柱结构进行验证,分析结果表明:该结构设计方法有效地改善了整机的动态性能,在立柱质量减轻的前提下,优化后的整机前六阶固有频率均得到了不同程度的提高,其中一阶固有频率提高了10%以上;并且机床在x方向上的最大共振峰值下降了49.8%,y方向下降了70.1%,z方向下降了66.2%。展开更多
Topology optimization was developed as an advanced structural design methodology to generate innovative lightweight and high-performance configurations that are difficult to obtain with conventional ideas.Additive man...Topology optimization was developed as an advanced structural design methodology to generate innovative lightweight and high-performance configurations that are difficult to obtain with conventional ideas.Additive manufacturing is an advanced manufacturing technique building asdesigned structures via layer-by-layer joining material,providing an alternative pattern for complex components.The integration of topology optimization and additive manufacturing can make the most of their advantages and potentials,and has wide application prospects in modern manufacturing.This article reviews the main content and applications of the research on the integration of topology optimization and additive manufacturing in recent years,including multi-scale or hierarchical structural optimization design and topology optimization considering additive manufacturing constraints.Meanwhile,some challenges of structural design approaches for additive manufacturing are discussed,such as the performance characterization and scale effects of additively manufactured lattice structures,the anisotropy and fatigue performance of additively manufactured material,and additively manufactured functionally graded material issues,etc.It is shown that in the research of topology optimization for additive manufacturing,the integration of material,structure,process and performance is important to pursue high-performance,multi-functional and lightweight production.This article provides a reference for further related research and aerospace applications.展开更多
To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade, numerical investigation is conducted. The simulation method is validated by oil flow visual...To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade, numerical investigation is conducted. The simulation method is validated by oil flow visualization and pressure distribution. The loss coefficients, streamline patterns, and topology structure as well as vortex structure are analyzed. Results show that the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack, and the total pressure loss increases greatly. There are several principal vortices inside the cascade passage. The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex, but finally merges into the latter. Corner vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex. One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface. Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex. The singular points and separation lines represent the basic separation feature of cascade passage. Plasma actuation has better effect at low freestream velocity, and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8% and 26.7% while the angle of attack is 2~. Plasma actuation changes the local topology structure, but does not change the number relation of singular points. One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears, both of which break the separation line on the suction surface.展开更多
文摘针对某机床结构薄弱件立柱的结构优化设计,提出了一种基于拓扑优化、筋板形式选择与布局以及尺寸优化的结构设计方法。首先利用有限元法(finite element analysis,FEA)对机床整机进行动力学分析,模态分析与谐响应分析结果表明立柱为影响整机动态性能的关键结构件。然后以立柱结构为优化目标,对立柱进行拓扑优化,根据拓扑优化的材料分布情况设计了立柱的最优基本结构形式,再通过选择抗弯、抗扭刚度较好的W类型筋板进行布局与尺寸优化,得到了最终的立柱优化结构。最后对优化的立柱结构进行验证,分析结果表明:该结构设计方法有效地改善了整机的动态性能,在立柱质量减轻的前提下,优化后的整机前六阶固有频率均得到了不同程度的提高,其中一阶固有频率提高了10%以上;并且机床在x方向上的最大共振峰值下降了49.8%,y方向下降了70.1%,z方向下降了66.2%。
基金supported by National Key Research and Development Program(2017YFB1102800)Key Project of NSFC(51790171,51761145111)NSFC for Excellent Young Scholars(11722219)。
文摘Topology optimization was developed as an advanced structural design methodology to generate innovative lightweight and high-performance configurations that are difficult to obtain with conventional ideas.Additive manufacturing is an advanced manufacturing technique building asdesigned structures via layer-by-layer joining material,providing an alternative pattern for complex components.The integration of topology optimization and additive manufacturing can make the most of their advantages and potentials,and has wide application prospects in modern manufacturing.This article reviews the main content and applications of the research on the integration of topology optimization and additive manufacturing in recent years,including multi-scale or hierarchical structural optimization design and topology optimization considering additive manufacturing constraints.Meanwhile,some challenges of structural design approaches for additive manufacturing are discussed,such as the performance characterization and scale effects of additively manufactured lattice structures,the anisotropy and fatigue performance of additively manufactured material,and additively manufactured functionally graded material issues,etc.It is shown that in the research of topology optimization for additive manufacturing,the integration of material,structure,process and performance is important to pursue high-performance,multi-functional and lightweight production.This article provides a reference for further related research and aerospace applications.
基金National Natural Science Foundation of China(50906100, 10972236)Foundation for the Author of National Excellent Doctoral Dissertation of PR China (201172)Postgraduate Technology Innovation Foundation of Air Force Engineering University(DX2010103)
文摘To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade, numerical investigation is conducted. The simulation method is validated by oil flow visualization and pressure distribution. The loss coefficients, streamline patterns, and topology structure as well as vortex structure are analyzed. Results show that the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack, and the total pressure loss increases greatly. There are several principal vortices inside the cascade passage. The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex, but finally merges into the latter. Corner vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex. One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface. Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex. The singular points and separation lines represent the basic separation feature of cascade passage. Plasma actuation has better effect at low freestream velocity, and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8% and 26.7% while the angle of attack is 2~. Plasma actuation changes the local topology structure, but does not change the number relation of singular points. One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears, both of which break the separation line on the suction surface.