Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible t...Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications.展开更多
The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately ...The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately after the occurrence of the earthquake. Severely damaged aseismic buildings, which were basically observed in the downtown of Longtoushan Town, were carefully examined one by one with the aim to improve design codes. This paper summarizes the damage observed to the investigated aseismic buildings in both the structural and local levels. A common failure mode was observed that most of the aseismic buildings, such as RC frame structures and confined masonry structures, were similarly destroyed by severe damage or complete collapse of the first story. The related strong ground motion, which was recorded at the nearby station, had a short duration of less than 20 s but a very large PGA up to 1.0 g. The RC frames based on the new design codes still failed to achieve the design target for "strong column, weak beam". Typical local failure details, which were related to the interaction between RC columns and infill walls and between constructional columns and masonry walls, are summarized with preliminary analyses.展开更多
Alternate path(AP) method is the most widely used method for the progressive collapse analysis,and its application in frame structures has been well proved.However,the application of AP method for other structures,esp...Alternate path(AP) method is the most widely used method for the progressive collapse analysis,and its application in frame structures has been well proved.However,the application of AP method for other structures,especially for cable-stayed structures,should be further developed.The four analytical procedures,i.e.,linear static,nonlinear static,linear dynamic,and nonlinear dynamic were firstly improved by taking into account the initial state.Then a cable-stayed structure was studied using the four improved methods.Furthermore,the losses of both one cable and two cables were discussed.The results show that for static and dynamic analyses of the cable-stayed bridges,there is large difference between the results obtained from simulations starting with either a deformed or a nondeformed configuration at the time of cable loss.The static results are conservative in the vicinity of the ruptured cable,but the dynamic effect of the cable loss in the area farther away from the loss-cable cannot be considered.Moreover,the dynamic amplification factor of 2.0 is found to be a good estimate for static analysis procedures,since linear static and linear dynamic procedures yield approximately the same maximum vertical deflection.The results of the comprehensive evaluation of the cable failure show that the tread of the progressive failure of the cable-stayed bridges decreases when the location of the failed cables is closer to the pylon.展开更多
基金the Chinese Scholarship Council,which funded her Joint Ph D research programthe support from Natural Sciences and Engineering Research Council of Canada(NSERC)for his research programsthe Chinese Ministry of Science and Technology for supporting his research program(grant No.2014CB744701)
文摘Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications.
基金Funding of IEM under Grant No.2014B04National Natural Science Foundation under Grant Nos.51108433 and 51308511China Postdoctoral Science Foundation under Grant No.2013M531083
文摘The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately after the occurrence of the earthquake. Severely damaged aseismic buildings, which were basically observed in the downtown of Longtoushan Town, were carefully examined one by one with the aim to improve design codes. This paper summarizes the damage observed to the investigated aseismic buildings in both the structural and local levels. A common failure mode was observed that most of the aseismic buildings, such as RC frame structures and confined masonry structures, were similarly destroyed by severe damage or complete collapse of the first story. The related strong ground motion, which was recorded at the nearby station, had a short duration of less than 20 s but a very large PGA up to 1.0 g. The RC frames based on the new design codes still failed to achieve the design target for "strong column, weak beam". Typical local failure details, which were related to the interaction between RC columns and infill walls and between constructional columns and masonry walls, are summarized with preliminary analyses.
基金supported by the National Natural Science Foundation of China(No. 50478075)the Jiangsu "Six Top Talent" Program of China(No. 07-F-008)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ0817),China
文摘Alternate path(AP) method is the most widely used method for the progressive collapse analysis,and its application in frame structures has been well proved.However,the application of AP method for other structures,especially for cable-stayed structures,should be further developed.The four analytical procedures,i.e.,linear static,nonlinear static,linear dynamic,and nonlinear dynamic were firstly improved by taking into account the initial state.Then a cable-stayed structure was studied using the four improved methods.Furthermore,the losses of both one cable and two cables were discussed.The results show that for static and dynamic analyses of the cable-stayed bridges,there is large difference between the results obtained from simulations starting with either a deformed or a nondeformed configuration at the time of cable loss.The static results are conservative in the vicinity of the ruptured cable,but the dynamic effect of the cable loss in the area farther away from the loss-cable cannot be considered.Moreover,the dynamic amplification factor of 2.0 is found to be a good estimate for static analysis procedures,since linear static and linear dynamic procedures yield approximately the same maximum vertical deflection.The results of the comprehensive evaluation of the cable failure show that the tread of the progressive failure of the cable-stayed bridges decreases when the location of the failed cables is closer to the pylon.