Microstructure evolution of wrought aluminum alloy extruded rods and the mechanism of liquid phase formation during reheating were investigated. And the relation between the volume fraction of liquid phase and the rec...Microstructure evolution of wrought aluminum alloy extruded rods and the mechanism of liquid phase formation during reheating were investigated. And the relation between the volume fraction of liquid phase and the recrystallization microstructure was proposed. The results show that increase in reheating temperature and time can augment the volume fraction of liquid phase and accelerate the grain spheroidization, as a result of which the requirement of semi-solid forming can be satisfied. Due to the higher aberration energy of grain boundary, the melting point is lowered as a result of the easy diffusion of atoms. At higher reheating temperature the grain boundary melts, the growth of the recrystallized grain is inhibited and the grain is refined. The composition of the low melt-point phase along the recrystallized grains was determined using EDS. It can be seen from the experimental results that when the extrusion rod of the wrought aluminum alloy is reheated at 610℃ for 20min, perfect fine equiaxial grains can be obtained, the average grain size is about 66.34μm and the volume fraction of solid phase is about 68%.展开更多
As π-calculus based on the interleaving semantics cannot depict the true concurrency and has few supporting tools,it is translated into Petri nets.π-calculus is divided into basic elements,sequence,concurrency,choic...As π-calculus based on the interleaving semantics cannot depict the true concurrency and has few supporting tools,it is translated into Petri nets.π-calculus is divided into basic elements,sequence,concurrency,choice and recursive modules.These modules are translated into Petri nets to construct a complicated system.Petri nets semantics for π-calculus visualize system structure as well as system behaviors.The structural analysis techniques allow direct qualitative analysis of the system properties on the structure of the nets.Finally,Petri nets semantics for π-calculus are illustrated by applying them to mobile telephone systems.展开更多
文摘Microstructure evolution of wrought aluminum alloy extruded rods and the mechanism of liquid phase formation during reheating were investigated. And the relation between the volume fraction of liquid phase and the recrystallization microstructure was proposed. The results show that increase in reheating temperature and time can augment the volume fraction of liquid phase and accelerate the grain spheroidization, as a result of which the requirement of semi-solid forming can be satisfied. Due to the higher aberration energy of grain boundary, the melting point is lowered as a result of the easy diffusion of atoms. At higher reheating temperature the grain boundary melts, the growth of the recrystallized grain is inhibited and the grain is refined. The composition of the low melt-point phase along the recrystallized grains was determined using EDS. It can be seen from the experimental results that when the extrusion rod of the wrought aluminum alloy is reheated at 610℃ for 20min, perfect fine equiaxial grains can be obtained, the average grain size is about 66.34μm and the volume fraction of solid phase is about 68%.
文摘As π-calculus based on the interleaving semantics cannot depict the true concurrency and has few supporting tools,it is translated into Petri nets.π-calculus is divided into basic elements,sequence,concurrency,choice and recursive modules.These modules are translated into Petri nets to construct a complicated system.Petri nets semantics for π-calculus visualize system structure as well as system behaviors.The structural analysis techniques allow direct qualitative analysis of the system properties on the structure of the nets.Finally,Petri nets semantics for π-calculus are illustrated by applying them to mobile telephone systems.