Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness o...Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth,relatively large physical size,and low detection sensitivity.The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm×100 mm×1.6 mm.The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine arrangement with a fractal unit connection distance of 3.0 mm.Specifically,the optimized antenna design achieves a detection bandwidth for which the voltage standing wave ratio is less than 2 that is approximately 97.3%of the UHF frequency range(0.3–3 GHz).Finally,a prototype antenna is fabricated using standard printed circuit board technology,and the results of experiments demonstrate that the proposed antenna is capable of detecting PD signals at a distance of 8 m from the discharge source.展开更多
This paper studies the performance of a submillimeter wave antenna operating between frequencies 0.1 THz and 10 THz with a 4-cyano-4-pentylbiphenyl[5CB]substrate.Since the size and shape of the antenna impact its gain...This paper studies the performance of a submillimeter wave antenna operating between frequencies 0.1 THz and 10 THz with a 4-cyano-4-pentylbiphenyl[5CB]substrate.Since the size and shape of the antenna impact its gain/directivity,resonant frequency,bandwidth,and efficiency,the two antenna types considered in this paper are:(a)Rectangular Patch Antenna(RPA),and(b)Cylindrical Dielectric Resonator Antenna(CDRA).Here a submillimeter wave antenna is compared with a millimeter wave(a few GHz to 100 GHz)antenna.These popular mmwave antennas are chosen for the submillimeter wave antenna in order to understand changes in their performance as the result of changes in their geometrical shape.FEldberechnung bei Korpern mit beliebiger Oberflache(FEKO)software is used for the design and calculation of the Three-Dimensional(3D)ElectroMagnetic(EM)patterns.This paper also concentrates on the design and analysis of a massive submillimeter wave Multiple-Input Multiple-Output(MIMO)(8 by 8)RPA and CDRA.展开更多
In this paper, a fundamental advancement of the basic helix design which expands to array having good bandwidth is proposed. The helix is inserted in a cavity. The result is a new antenna design that offers the perfor...In this paper, a fundamental advancement of the basic helix design which expands to array having good bandwidth is proposed. The helix is inserted in a cavity. The result is a new antenna design that offers the performance characteristics and advantages of the conven-tional helix but in a much more compact physical size envelope. A 4-element rectangular helical array has been designed. For miniaturization and impedance matching, the helical wire is replaced by a rectangular cross sectioned strip. It has been observed that when the helix is inserted in a cavity, it behaves differently from a normal helical antenna. The effects of the cavity on the number of turns, the impedance of total antenna, and the reflection coefficient have been analyzed. The array is designed for 2.4 GHz. The return loss obtained is less than - 10 dB and the bandwidth is more than 1.3 GHz for the array.展开更多
文摘Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth,relatively large physical size,and low detection sensitivity.The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm×100 mm×1.6 mm.The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine arrangement with a fractal unit connection distance of 3.0 mm.Specifically,the optimized antenna design achieves a detection bandwidth for which the voltage standing wave ratio is less than 2 that is approximately 97.3%of the UHF frequency range(0.3–3 GHz).Finally,a prototype antenna is fabricated using standard printed circuit board technology,and the results of experiments demonstrate that the proposed antenna is capable of detecting PD signals at a distance of 8 m from the discharge source.
文摘This paper studies the performance of a submillimeter wave antenna operating between frequencies 0.1 THz and 10 THz with a 4-cyano-4-pentylbiphenyl[5CB]substrate.Since the size and shape of the antenna impact its gain/directivity,resonant frequency,bandwidth,and efficiency,the two antenna types considered in this paper are:(a)Rectangular Patch Antenna(RPA),and(b)Cylindrical Dielectric Resonator Antenna(CDRA).Here a submillimeter wave antenna is compared with a millimeter wave(a few GHz to 100 GHz)antenna.These popular mmwave antennas are chosen for the submillimeter wave antenna in order to understand changes in their performance as the result of changes in their geometrical shape.FEldberechnung bei Korpern mit beliebiger Oberflache(FEKO)software is used for the design and calculation of the Three-Dimensional(3D)ElectroMagnetic(EM)patterns.This paper also concentrates on the design and analysis of a massive submillimeter wave Multiple-Input Multiple-Output(MIMO)(8 by 8)RPA and CDRA.
文摘In this paper, a fundamental advancement of the basic helix design which expands to array having good bandwidth is proposed. The helix is inserted in a cavity. The result is a new antenna design that offers the performance characteristics and advantages of the conven-tional helix but in a much more compact physical size envelope. A 4-element rectangular helical array has been designed. For miniaturization and impedance matching, the helical wire is replaced by a rectangular cross sectioned strip. It has been observed that when the helix is inserted in a cavity, it behaves differently from a normal helical antenna. The effects of the cavity on the number of turns, the impedance of total antenna, and the reflection coefficient have been analyzed. The array is designed for 2.4 GHz. The return loss obtained is less than - 10 dB and the bandwidth is more than 1.3 GHz for the array.