Let R be an integral domain of characteristic zero such that the corresponding group rings have block decompositions. We first prove that the submodule consisting of all the R-valued ξi-symmetric functions of several...Let R be an integral domain of characteristic zero such that the corresponding group rings have block decompositions. We first prove that the submodule consisting of all the R-valued ξi-symmetric functions of several variables is a symmetry class, where ξi is any block character. Then we present a relationship among certain operators introduced for block character. Then we present a relationship among certain operators introduced for block characters. As a consequence, we obtain a decomposition of an arbitrary R-valued function of several variables. Finally, we describe the symmetry property of such summands and determine all the symmetry classes.展开更多
文摘Let R be an integral domain of characteristic zero such that the corresponding group rings have block decompositions. We first prove that the submodule consisting of all the R-valued ξi-symmetric functions of several variables is a symmetry class, where ξi is any block character. Then we present a relationship among certain operators introduced for block character. Then we present a relationship among certain operators introduced for block characters. As a consequence, we obtain a decomposition of an arbitrary R-valued function of several variables. Finally, we describe the symmetry property of such summands and determine all the symmetry classes.