An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results...An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results show that the microstructure of the TLP diffusion bonded joints is a combination of γ solid solution (or a γ+γ′ structure) and borides. With the bonding time increasing, the quantity of the borides both in bonding seam and adjacent zones is gradually reduced, and the joint stress rupture property is improved. The obtained stress rupture property of the TLP bonded joints is on a level with the transverse property of IC6 base materials. [展开更多
In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture...In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.展开更多
The microstructure and stress-rupture property of the large-scale complex single crystal(SX) casting DD10 were investigated in high-rate solidification process. It is found that the primary dendrite arm spacing(PDA...The microstructure and stress-rupture property of the large-scale complex single crystal(SX) casting DD10 were investigated in high-rate solidification process. It is found that the primary dendrite arm spacing(PDAS) does not increase monotonically with the height increase. When across the platform, the temperature gradient increases due to the effect of platform, and the corresponding PDAS decreases. The distribution of eutectic volume fraction in large-scale complex SX casting is affected by PDAS, solid back diffusion, and the development of high order dendrites. The eutectic volume fraction contained in the sample taken below the platform decreases with the height increase. While the eutectic volume fraction contained in the sample taken upper the platform increases gradually with the height increase. After heat treatment,most of the γ/γ' eutectics are eliminated and the components are distributed uniformly. The similar stress rupture properties of the samples at different heights in the same direction are obtained.展开更多
To examine the influences of minor modification of Al content on the microstructural stabilities and stress rupture properties,two alloys with minor difference in Al content were exposed isothermally at 1100℃for 100 ...To examine the influences of minor modification of Al content on the microstructural stabilities and stress rupture properties,two alloys with minor difference in Al content were exposed isothermally at 1100℃for 100 h,500 h,and 1000 h,respectively.The microstructures were characterized before and after thermal exposure.It was found that when Al content was decreased by 0.4 wt%,the volume fractionγ'decreased by 4%,the size ofγ'increased by 40 nm,the matrix channel width increased by 5 nm,and the misfit degree ofγ/γ'phases increased by 0.006%after heat treatment(HT).During thermal exposure,the alloy with low Al content had a better resistance to coarsening ofγ'phase and precipitation ofμphase.Theγ'particles of the alloy with high AI content tended to connect each other and coarsened along<100>directions;however,theγ'particles of the alloy with low Al content remained cubic after 500 h.A serious coarsening behavior took place in the two alloys after aging for 1000 h.The structural stabilities were significantly improved.However,the change of 0.4 wt%Al content was found to have little effect on the high temperature stress-rupture properties.展开更多
Stress-rupture properties of a Ni-base Re-containing single-crystal superalloy with three orientations have been tested under 900℃/445 MPa.An obvious anisotropy of stress-rupture property is attributed to orientation...Stress-rupture properties of a Ni-base Re-containing single-crystal superalloy with three orientations have been tested under 900℃/445 MPa.An obvious anisotropy of stress-rupture property is attributed to orientation reliant deformation microstructure.The good strength in[001]orientation is attributed to the rapid multiplication of dislocations active in horizontal channels and laterγ'cutting via dislocations pair coupled with anti-phase boundary.The microtwin formation largely limits the strength and plasticity as a result of the continuous shearing acrossγ/γ'microstructure by{111}112 slip activated in[011]orientation.The property in[111]orientation results mainly from the lateral cross-slip movements of the screw dislocations within connected matrix channels as well as the precipitate shearing by coplanar dislocations.Microcracks all initially originate from the interdendritic micropores in three orientations.The critical temperature of stress-rupture anisotropy could be increased by a high level of refractory solutes especially Re.展开更多
文摘An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results show that the microstructure of the TLP diffusion bonded joints is a combination of γ solid solution (or a γ+γ′ structure) and borides. With the bonding time increasing, the quantity of the borides both in bonding seam and adjacent zones is gradually reduced, and the joint stress rupture property is improved. The obtained stress rupture property of the TLP bonded joints is on a level with the transverse property of IC6 base materials. [
基金Projects (2010CB631200,2010CB631206) supported by the National Basic Research Program of ChinaProject (50931004) supported by the National Natural Science Foundation of China
文摘In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.
基金supported financially by the National Key Research and Development Program of China(No.2016YFB0701403)the National Natural Science Foundation of China(Nos.51631008 and 51401216)
文摘The microstructure and stress-rupture property of the large-scale complex single crystal(SX) casting DD10 were investigated in high-rate solidification process. It is found that the primary dendrite arm spacing(PDAS) does not increase monotonically with the height increase. When across the platform, the temperature gradient increases due to the effect of platform, and the corresponding PDAS decreases. The distribution of eutectic volume fraction in large-scale complex SX casting is affected by PDAS, solid back diffusion, and the development of high order dendrites. The eutectic volume fraction contained in the sample taken below the platform decreases with the height increase. While the eutectic volume fraction contained in the sample taken upper the platform increases gradually with the height increase. After heat treatment,most of the γ/γ' eutectics are eliminated and the components are distributed uniformly. The similar stress rupture properties of the samples at different heights in the same direction are obtained.
基金sponsored by The National Key Research and Development Program of China (No.2018YFB1106600)
文摘To examine the influences of minor modification of Al content on the microstructural stabilities and stress rupture properties,two alloys with minor difference in Al content were exposed isothermally at 1100℃for 100 h,500 h,and 1000 h,respectively.The microstructures were characterized before and after thermal exposure.It was found that when Al content was decreased by 0.4 wt%,the volume fractionγ'decreased by 4%,the size ofγ'increased by 40 nm,the matrix channel width increased by 5 nm,and the misfit degree ofγ/γ'phases increased by 0.006%after heat treatment(HT).During thermal exposure,the alloy with low Al content had a better resistance to coarsening ofγ'phase and precipitation ofμphase.Theγ'particles of the alloy with high AI content tended to connect each other and coarsened along<100>directions;however,theγ'particles of the alloy with low Al content remained cubic after 500 h.A serious coarsening behavior took place in the two alloys after aging for 1000 h.The structural stabilities were significantly improved.However,the change of 0.4 wt%Al content was found to have little effect on the high temperature stress-rupture properties.
基金financially supported by the National Key R&D Program of China(No.2017YFA0700704)the National Natural Science Foundation of China(No.51871221)the National Science and Technology Major Project(No.2017-VI-0002-0072)。
文摘Stress-rupture properties of a Ni-base Re-containing single-crystal superalloy with three orientations have been tested under 900℃/445 MPa.An obvious anisotropy of stress-rupture property is attributed to orientation reliant deformation microstructure.The good strength in[001]orientation is attributed to the rapid multiplication of dislocations active in horizontal channels and laterγ'cutting via dislocations pair coupled with anti-phase boundary.The microtwin formation largely limits the strength and plasticity as a result of the continuous shearing acrossγ/γ'microstructure by{111}112 slip activated in[011]orientation.The property in[111]orientation results mainly from the lateral cross-slip movements of the screw dislocations within connected matrix channels as well as the precipitate shearing by coplanar dislocations.Microcracks all initially originate from the interdendritic micropores in three orientations.The critical temperature of stress-rupture anisotropy could be increased by a high level of refractory solutes especially Re.