Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps t...Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps teachers to better implement course teaching.However,a lack of evaluation models for the fusion of temporal and non-temporal behavioral data leads to an unsatisfactory evaluation effect.To meet the demand for predicting students’academic performance through learning behavior data,this study proposes a learning effect evaluation method that integrates expert perspective indicators to predict academic performance by constructing a dual-stream network that combines temporal behavior data and non-temporal behavior data in the learning process.In this paper,firstly,the Delphi method is used to analyze and process the course learning behavior data of students and establish an effective evaluation index system of learning behavior with universality;secondly,the Mann-Whitney U-test and the complex correlation analysis are used to analyze further and validate the evaluation indexes;and lastly,a dual-stream information fusion model,which combines temporal and non-temporal features,is established.The learning effect evaluation model is built,and the results of the mean absolute error(MAE)and root mean square error(RMSE)indexes are 4.16 and 5.29,respectively.This study indicates that combining expert perspectives for evaluation index selection and further fusing temporal and non-temporal behavioral features that for learning effect evaluation and prediction is rationality,accuracy,and effectiveness,which provides a powerful help for the practical application of learning effect evaluation and prediction.展开更多
With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors ...With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average.展开更多
基金supported by the National Key R&D Program of China(2022YFB3203800)National Natural Science Foundation of China(62007026)+2 种基金National Young Talent Program,Shaanxi Young Top-notch Talent Program,Key Research and Development Program of Shaanxi(2022GY-313)Xi’an Science and Technology Project(23ZDCYJSGG0026-2023)the Fundamental Research Funds for Central Universities(ZYTS23192).
文摘Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps teachers to better implement course teaching.However,a lack of evaluation models for the fusion of temporal and non-temporal behavioral data leads to an unsatisfactory evaluation effect.To meet the demand for predicting students’academic performance through learning behavior data,this study proposes a learning effect evaluation method that integrates expert perspective indicators to predict academic performance by constructing a dual-stream network that combines temporal behavior data and non-temporal behavior data in the learning process.In this paper,firstly,the Delphi method is used to analyze and process the course learning behavior data of students and establish an effective evaluation index system of learning behavior with universality;secondly,the Mann-Whitney U-test and the complex correlation analysis are used to analyze further and validate the evaluation indexes;and lastly,a dual-stream information fusion model,which combines temporal and non-temporal features,is established.The learning effect evaluation model is built,and the results of the mean absolute error(MAE)and root mean square error(RMSE)indexes are 4.16 and 5.29,respectively.This study indicates that combining expert perspectives for evaluation index selection and further fusing temporal and non-temporal behavioral features that for learning effect evaluation and prediction is rationality,accuracy,and effectiveness,which provides a powerful help for the practical application of learning effect evaluation and prediction.
基金supported by the National Natural Science Foundation of China(No.62006135)the Natural Science Foundation of Shandong Province(No.ZR2020QF116)。
文摘With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average.