Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especia...Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper,mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation,an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method,the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.展开更多
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct...Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.展开更多
Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis ...Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.展开更多
A straight-line wind case was observed in Tianjin on 13 June 2005,which was caused by a gust front from a squall line.Mesoscale analyses based on observations from in-situ surface stations,sounding,and in-situ radar a...A straight-line wind case was observed in Tianjin on 13 June 2005,which was caused by a gust front from a squall line.Mesoscale analyses based on observations from in-situ surface stations,sounding,and in-situ radar as well as fine-scale analyses based on observation tower data were performed.The mesoscale characteristics of the gust front determined its shape and fine-scale internal structures.Based on the scale and wavelet analyses,the fine-scale structures within the gust front were distinguished from the classical mesoscale structures,and such fine-scale structures were associated with the distribution of straight-line wind zones.A series of cross-frontal fine-scale circulations at the lowest levels of the gust front was discovered,which caused a relatively weak wind zone within the frontal strong wind zone.The downdraft at the rear of the head region of the gust front was more intense than in the classical model,and similar to the microburst,a series of vertical vortices propagated from the rear region to the frontal region.In addition,strong tangential fine-scale instability was detected in the frontal region.Finally,a fine-scale gust front model with straight-line wind zones is presented.展开更多
文摘Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper,mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation,an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method,the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.
基金Project(HEUCF110707)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E201216)supported by Heilongjiang Natural Science Fund,China
文摘Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.
基金Project (E201216) supported by Heilongjiang Provincial Natural Science Foundation,China
文摘Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY200906011,GYHY201006007,and GYHY201106004)
文摘A straight-line wind case was observed in Tianjin on 13 June 2005,which was caused by a gust front from a squall line.Mesoscale analyses based on observations from in-situ surface stations,sounding,and in-situ radar as well as fine-scale analyses based on observation tower data were performed.The mesoscale characteristics of the gust front determined its shape and fine-scale internal structures.Based on the scale and wavelet analyses,the fine-scale structures within the gust front were distinguished from the classical mesoscale structures,and such fine-scale structures were associated with the distribution of straight-line wind zones.A series of cross-frontal fine-scale circulations at the lowest levels of the gust front was discovered,which caused a relatively weak wind zone within the frontal strong wind zone.The downdraft at the rear of the head region of the gust front was more intense than in the classical model,and similar to the microburst,a series of vertical vortices propagated from the rear region to the frontal region.In addition,strong tangential fine-scale instability was detected in the frontal region.Finally,a fine-scale gust front model with straight-line wind zones is presented.