The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)fr...The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)frame buildings,and masonry buildings.The near-field region is known to be tectonically highly active,and the local intensity level is the highest,that is,0.4g peak ground acceleration(PGA)for the design basis earthquake,in the Chinese zonation of seismic ground motion parameters.The extent of damage ranged from the weak-story collapse that claimed lives to the extensive nonstructural damage that suspended occupancy.The report highlights the first observation of the destruction of rubber bearings and viscous dampers in the isolation layer of Chinese seismically isolated buildings.It also features the rare observation of the brittle shear failure of RC columns in moment-resisting frames in a region of such a high seismic design requirement.Possible reasons that may have attributed to the reported damage are suggested by providing facts observed in the field.However,careful forensic analyses are needed before any conclusive judgment can be made.展开更多
A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic perfor...A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.展开更多
基金the Natural Science Foundation of China(52122811).
文摘The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)frame buildings,and masonry buildings.The near-field region is known to be tectonically highly active,and the local intensity level is the highest,that is,0.4g peak ground acceleration(PGA)for the design basis earthquake,in the Chinese zonation of seismic ground motion parameters.The extent of damage ranged from the weak-story collapse that claimed lives to the extensive nonstructural damage that suspended occupancy.The report highlights the first observation of the destruction of rubber bearings and viscous dampers in the isolation layer of Chinese seismically isolated buildings.It also features the rare observation of the brittle shear failure of RC columns in moment-resisting frames in a region of such a high seismic design requirement.Possible reasons that may have attributed to the reported damage are suggested by providing facts observed in the field.However,careful forensic analyses are needed before any conclusive judgment can be made.
文摘A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.