风光制氢已经成为了解决大规模风能和太阳能消纳的有效途径。针对传统方法未考虑锂电池储能系统和氢储能系统的功率分配和协调运行问题,提出了含电/氢复合储能的直流微电网模糊功率分配和协调控制方法,建立了碱式电解槽、储氢罐以及燃...风光制氢已经成为了解决大规模风能和太阳能消纳的有效途径。针对传统方法未考虑锂电池储能系统和氢储能系统的功率分配和协调运行问题,提出了含电/氢复合储能的直流微电网模糊功率分配和协调控制方法,建立了碱式电解槽、储氢罐以及燃料电池的数学模型,设计了模糊逻辑控制器,给出了不同接口变换器的控制方法。最后,搭建了仿真模型和基于RT-LAB硬件在环实验平台,对所提出算法和传统方法进行了仿真和实验研究。仿真和实验结果表明,所提出方法能够使得锂电池荷电状态(state of charge,SOC)和储氢罐的氢状态(state of hydrogen,SOH)逐渐趋于合理工作区间,提升锂电池的使用寿命,减小了各接口装置控制模式切换次数。展开更多
文摘风光制氢已经成为了解决大规模风能和太阳能消纳的有效途径。针对传统方法未考虑锂电池储能系统和氢储能系统的功率分配和协调运行问题,提出了含电/氢复合储能的直流微电网模糊功率分配和协调控制方法,建立了碱式电解槽、储氢罐以及燃料电池的数学模型,设计了模糊逻辑控制器,给出了不同接口变换器的控制方法。最后,搭建了仿真模型和基于RT-LAB硬件在环实验平台,对所提出算法和传统方法进行了仿真和实验研究。仿真和实验结果表明,所提出方法能够使得锂电池荷电状态(state of charge,SOC)和储氢罐的氢状态(state of hydrogen,SOH)逐渐趋于合理工作区间,提升锂电池的使用寿命,减小了各接口装置控制模式切换次数。