安胜安全操作系统是自主研制的基于 Linux 的高安全等级安全操作系统,包括安全内核,安全架构与安全模型.总结了对该系统进行的隐蔽通道分析方法,首次报道基于 Linux 内核开发的安全操作系统的隐蔽通道分析结果.应用新型的“回溯方法”...安胜安全操作系统是自主研制的基于 Linux 的高安全等级安全操作系统,包括安全内核,安全架构与安全模型.总结了对该系统进行的隐蔽通道分析方法,首次报道基于 Linux 内核开发的安全操作系统的隐蔽通道分析结果.应用新型的“回溯方法”发现了某些新的隐蔽通道.对被标识的隐蔽通道,准确地计算了它们的带宽,并进行了适当的隐蔽通道处理.展开更多
To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NS...To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NSF-CAES) hub.A typical ZCE-MEI combining power distribution network(PDN) and district heating network(DHN) with NSF-CAES is considered in this paper.NSF-CAES hub is formulated to take the thermal dynamic and pressure behavior into account to enhance dispatch flexibility.A modified Dist Flow model is utilized to allow several discrete and continuous reactive power compensators to maintain voltage quality of PDN.Optimal operation of the ZCE-MEI is firstly modeled as a mixed integer nonlinear programming(MINLP).Several transformations and simplifications are taken to convert the problem as a mixed integer linear programming(MILP)which can be effectively solved by CPLEX.A typical test system composed of a NSF-CAES hub,a 33-bus PDN,and an 8-node DHN is adopted to verify the effectiveness of the proposed ZCE-MEI in terms of reducing operation cost and wind curtailment.展开更多
This paper presents engineering experiences from battery energy storage system(BESS)projects that require design and implementation of specialized power conversion systems(a fast-response,automatic power converter and...This paper presents engineering experiences from battery energy storage system(BESS)projects that require design and implementation of specialized power conversion systems(a fast-response,automatic power converter and controller).These projects concern areas of generation,transmission,and distribution of electric energy,as well as end-energy user benefits,such as grid frequency regulation,renewable energy smoothing and leveling,energy dispatching and arbitrage,power quality and reliability improvements for connected customers,islanding operations,and smart microgrid applications.In general,a grid level BESS project sends an interconnect request to utility power grids in the project development stage.Simulation models of equipment are then sent for a system impact study(e.g.,power flow and/or stability analysis),based on utility grid code requirements.The system study then determines the connection’s technical feasibility and impact of the project on the power grid.In this paper,a set of new BESS models is presented that are configured and parameterized for use in system impact studies as well as transmission planning studies.The models,which have been recently approved and released by the U.S.Western Electricity Coordinating Council(WECC),represent the steady state and dynamic performance of the BESS in several software platforms for power system studies based on operating project performance experience.Model benchmarking results as well as a real system case study are also included in the paper to show that the parameterized and tuned models respond correctly and as expected when system operating conditions change following contingency events.Finally,this paper provides useful guidelines in the use of new models to represent a BESS for power system analysis.展开更多
Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-b...Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-based flow batteries are well suitable for stationary energy storage applications,since they feature the advantages of high safety,high cell voltage and low cost.Currently,many alkaline zinc-based flow batteries have been proposed and developed,e.g.,the alkaline zinc–iron flow battery and alkaline zinc–nickel flow battery.Their development and application are closely related to advanced materials and battery configurations.In this perspective,we will first provide a brief introduction and discussion of alkaline zinc-based flow batteries.Then we focus on these batteries from the perspective of their current status,challenges and prospects.The bottlenecks for these batteries are briefly analyzed.Combined with the practical requirements and development trends of alkaline zinc-based flow battery technologies,their future development and research direction will be summarized.展开更多
文摘安胜安全操作系统是自主研制的基于 Linux 的高安全等级安全操作系统,包括安全内核,安全架构与安全模型.总结了对该系统进行的隐蔽通道分析方法,首次报道基于 Linux 内核开发的安全操作系统的隐蔽通道分析结果.应用新型的“回溯方法”发现了某些新的隐蔽通道.对被标识的隐蔽通道,准确地计算了它们的带宽,并进行了适当的隐蔽通道处理.
基金supported in part by the National Natural Science Foundation of China(No.51321005,No.51377092,No.51577163)Opening Foundation of the Qinghai Province Key Laboratory of Photovoltaic Power Generation and Grid-connected Technology
文摘To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NSF-CAES) hub.A typical ZCE-MEI combining power distribution network(PDN) and district heating network(DHN) with NSF-CAES is considered in this paper.NSF-CAES hub is formulated to take the thermal dynamic and pressure behavior into account to enhance dispatch flexibility.A modified Dist Flow model is utilized to allow several discrete and continuous reactive power compensators to maintain voltage quality of PDN.Optimal operation of the ZCE-MEI is firstly modeled as a mixed integer nonlinear programming(MINLP).Several transformations and simplifications are taken to convert the problem as a mixed integer linear programming(MILP)which can be effectively solved by CPLEX.A typical test system composed of a NSF-CAES hub,a 33-bus PDN,and an 8-node DHN is adopted to verify the effectiveness of the proposed ZCE-MEI in terms of reducing operation cost and wind curtailment.
文摘This paper presents engineering experiences from battery energy storage system(BESS)projects that require design and implementation of specialized power conversion systems(a fast-response,automatic power converter and controller).These projects concern areas of generation,transmission,and distribution of electric energy,as well as end-energy user benefits,such as grid frequency regulation,renewable energy smoothing and leveling,energy dispatching and arbitrage,power quality and reliability improvements for connected customers,islanding operations,and smart microgrid applications.In general,a grid level BESS project sends an interconnect request to utility power grids in the project development stage.Simulation models of equipment are then sent for a system impact study(e.g.,power flow and/or stability analysis),based on utility grid code requirements.The system study then determines the connection’s technical feasibility and impact of the project on the power grid.In this paper,a set of new BESS models is presented that are configured and parameterized for use in system impact studies as well as transmission planning studies.The models,which have been recently approved and released by the U.S.Western Electricity Coordinating Council(WECC),represent the steady state and dynamic performance of the BESS in several software platforms for power system studies based on operating project performance experience.Model benchmarking results as well as a real system case study are also included in the paper to show that the parameterized and tuned models respond correctly and as expected when system operating conditions change following contingency events.Finally,this paper provides useful guidelines in the use of new models to represent a BESS for power system analysis.
基金supported by the Dalian Institute of Chemical Physics,Chinese Academy of Sciencesthe National Natural Science Foundation of China(22078313,21925804)+1 种基金Free exploring basic research project of Liaoning(2022JH6/100100005)Youth Innovation Promotion Association CAS(2019182)。
文摘Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-based flow batteries are well suitable for stationary energy storage applications,since they feature the advantages of high safety,high cell voltage and low cost.Currently,many alkaline zinc-based flow batteries have been proposed and developed,e.g.,the alkaline zinc–iron flow battery and alkaline zinc–nickel flow battery.Their development and application are closely related to advanced materials and battery configurations.In this perspective,we will first provide a brief introduction and discussion of alkaline zinc-based flow batteries.Then we focus on these batteries from the perspective of their current status,challenges and prospects.The bottlenecks for these batteries are briefly analyzed.Combined with the practical requirements and development trends of alkaline zinc-based flow battery technologies,their future development and research direction will be summarized.