This article presents two new kinds of artificial neural network (ANN) response surface methods (RSMs): the ANN RSM based on early stopping technique (ANNRSM-1), and the ANN RSM based on regularization theory ...This article presents two new kinds of artificial neural network (ANN) response surface methods (RSMs): the ANN RSM based on early stopping technique (ANNRSM-1), and the ANN RSM based on regularization theory (ANNRSM-2). The following improvements are made to the conventional ANN RSM (ANNRSM-0): 1) by monitoring the validation error during the training process, ANNRSM-1 determines the early stopping point and the training stopping point, and the weight vector at the early stopping point, which corresponds to the ANN model with the optimal generalization, is finally returned as the training result; 2) according to the regularization theory, ANNRSM-2 modifies the conventional training performance function by adding to it the sum of squares of the network weights, so the network weights are forced to have smaller values while the training error decreases. Tests show that the performance of ANN RSM becomes much better due to the above-mentioned improvements: first, ANNRSM-1 and ANNRSM-2 approximate to the limit state function (LSF) more accurately than ANNRSM-0; second, the estimated failure probabilities given by ANNRSM-1 and ANNRSM-2 have smaller errors than that obtained by ANNRSM-0; third, compared with ANNRSM-0, ANNRSM-1 and ANNRSM-2 require much fewer data samples to achieve stable failure probability results.展开更多
The investigation into the electronic stopping power of heavy ions in solids is very important for the modification processes of material surfaces using ion beams. For lowand high-velocity ions, the electronic stoppin...The investigation into the electronic stopping power of heavy ions in solids is very important for the modification processes of material surfaces using ion beams. For lowand high-velocity ions, the electronic stopping power can be calculated in the light of some theories, but for intermediate-velocity ions, so far there has not been any theory available except the empirical formula put forward by Ziegler, Biersack and Littmark (ZBL). This is because in this velocity range the ions are partially stripped and展开更多
In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical developmen...In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed.展开更多
停止信号任务(Stop Signal Task)是研究反应抑制的常用实验范式之一,近年来被广泛运用于认知神经科学、心理病理学等研究领域。本文详细介绍了经典停止信号任务的实验过程、评价指标,重点阐述了与此任务相关的反应抑制理论模型——独立...停止信号任务(Stop Signal Task)是研究反应抑制的常用实验范式之一,近年来被广泛运用于认知神经科学、心理病理学等研究领域。本文详细介绍了经典停止信号任务的实验过程、评价指标,重点阐述了与此任务相关的反应抑制理论模型——独立竞争模型,并提出该范式存在的问题,为停止信号任务范式的完善与推广提供了基础。展开更多
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments...Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.展开更多
基金National High-tech Research and Development Program of China (2006AA04Z405)
文摘This article presents two new kinds of artificial neural network (ANN) response surface methods (RSMs): the ANN RSM based on early stopping technique (ANNRSM-1), and the ANN RSM based on regularization theory (ANNRSM-2). The following improvements are made to the conventional ANN RSM (ANNRSM-0): 1) by monitoring the validation error during the training process, ANNRSM-1 determines the early stopping point and the training stopping point, and the weight vector at the early stopping point, which corresponds to the ANN model with the optimal generalization, is finally returned as the training result; 2) according to the regularization theory, ANNRSM-2 modifies the conventional training performance function by adding to it the sum of squares of the network weights, so the network weights are forced to have smaller values while the training error decreases. Tests show that the performance of ANN RSM becomes much better due to the above-mentioned improvements: first, ANNRSM-1 and ANNRSM-2 approximate to the limit state function (LSF) more accurately than ANNRSM-0; second, the estimated failure probabilities given by ANNRSM-1 and ANNRSM-2 have smaller errors than that obtained by ANNRSM-0; third, compared with ANNRSM-0, ANNRSM-1 and ANNRSM-2 require much fewer data samples to achieve stable failure probability results.
基金Project supported by the Foundation of the 863-advanced Technology of China
文摘The investigation into the electronic stopping power of heavy ions in solids is very important for the modification processes of material surfaces using ion beams. For lowand high-velocity ions, the electronic stopping power can be calculated in the light of some theories, but for intermediate-velocity ions, so far there has not been any theory available except the empirical formula put forward by Ziegler, Biersack and Littmark (ZBL). This is because in this velocity range the ions are partially stripped and
文摘In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed.
文摘停止信号任务(Stop Signal Task)是研究反应抑制的常用实验范式之一,近年来被广泛运用于认知神经科学、心理病理学等研究领域。本文详细介绍了经典停止信号任务的实验过程、评价指标,重点阐述了与此任务相关的反应抑制理论模型——独立竞争模型,并提出该范式存在的问题,为停止信号任务范式的完善与推广提供了基础。
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea of Republic, No. 2012R1A1B4003477
文摘Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.