The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch...The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.展开更多
By adopting cyclic increment loading and unloading method, time-independent and time-dependent strains can be separated. It is more reasonable to describe the reversible and the irreversible deformations of sample sep...By adopting cyclic increment loading and unloading method, time-independent and time-dependent strains can be separated. It is more reasonable to describe the reversible and the irreversible deformations of sample separately during creep process. A nonlinear elastic-visco-plastic rheological model is presented to characterize the time-based deformational behavior of hard rock. Specifically, a spring element is used to describe reversible instantaneous elastic deformation. A reversible nonlinear visco-elastic (RNVE) model is developed to characterize recoverable visco-elastic response. A combined model, which contains a fractional derivative dashpot in series with another Hook’s body, and a St. Venant body in parallel with them, is proposed to describe irreversible visco-plastic deformation. Furthermore, a three-stage damage equation based on strain energy is developed in the visco-plastic portion and then nonlinear elastic-visco-plastic rheological damage model is established to explain the trimodal creep response of hard rock. Finally, the proposed model is validated by a laboratory triaxial rheological experiment. Comparing with theoretical and experimental results, this rheological damage model characterizes well the reversible and irreversible deformations of the sample, especially the tertiary creep behavior.展开更多
基金Supported by the National Natural Science Foundation of China (40318002)
文摘The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.
基金Project(BK20150005)supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,ChinaProject(2015XKZD05)supported by the Fundamental Research Funds for the Central Universities,China
文摘By adopting cyclic increment loading and unloading method, time-independent and time-dependent strains can be separated. It is more reasonable to describe the reversible and the irreversible deformations of sample separately during creep process. A nonlinear elastic-visco-plastic rheological model is presented to characterize the time-based deformational behavior of hard rock. Specifically, a spring element is used to describe reversible instantaneous elastic deformation. A reversible nonlinear visco-elastic (RNVE) model is developed to characterize recoverable visco-elastic response. A combined model, which contains a fractional derivative dashpot in series with another Hook’s body, and a St. Venant body in parallel with them, is proposed to describe irreversible visco-plastic deformation. Furthermore, a three-stage damage equation based on strain energy is developed in the visco-plastic portion and then nonlinear elastic-visco-plastic rheological damage model is established to explain the trimodal creep response of hard rock. Finally, the proposed model is validated by a laboratory triaxial rheological experiment. Comparing with theoretical and experimental results, this rheological damage model characterizes well the reversible and irreversible deformations of the sample, especially the tertiary creep behavior.