This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it...This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it to magnetohydrodynamics(MHD)equations.The improved CESE method can improve the solution quality even with a large disparity in the Courant number(CFL)when using a fixed global marching time.Moreover,for a small CFL(say<0.1),the method can significantly reduce the numerical dissipation and retain the solution quality,which are verified by two benchmark problems.And meanwhile,comparison with the original CESE scheme shows better resolution of the improved scheme results.Finally,we demonstrate its validation through the application of this method in three-dimensional coronal dynamical structure with dipole magnetic fields and measured solar surface magnetic fields as the initial input.展开更多
Steady structures originating from dynamic self-assembly have begun to show their advantages in new generation materials, and pose challenges to equilibrium self-assembly. In view of the important role of confinement ...Steady structures originating from dynamic self-assembly have begun to show their advantages in new generation materials, and pose challenges to equilibrium self-assembly. In view of the important role of confinement in self-assembly, here, we propose a new type of confinement leading to dynamic steady structures, which opens a new window for the conventional confinement.In our model, we consider the self-assembly of ellipsoids in 2D circular confinement via the boundary performing periodically stretching and contracting oscillation. Langevin dynamics simulations reveal the achievement of non-equilibrium steady structures under appropriate boundary motions, which are novel smectic structures with stable topological defects. Different from the confinement with a static boundary, ellipsoids close to the boundary have variable orientations depending on the boundary motion.Order-order structural transitions, accompanied by the symmetry change and varied defect number, occur with the change of oscillating amplitude and/or frequency of the boundary. Slow and fast dynamics are distinguished according to whether structural rearrangements and energetic adjustment happen or not. The collective motion of confined ellipsoids, aroused by the work performed on the system, is the key factor determining both the structure and dynamics of the self-assembly. Our results not only achieve novel textures of circular confined liquid crystals, but also inspire us to reconsider the self-assembly within the living organisms.展开更多
The number and distribution of the singular points of streamlines in the cross-section of steady flow through a curved tube ate discussed by using the method of topological structure analysis. And a theoretical criter...The number and distribution of the singular points of streamlines in the cross-section of steady flow through a curved tube ate discussed by using the method of topological structure analysis. And a theoretical criterion is obtained for the bifurcation of flow vortexes for the secondary flow turning from two-vortex structure into four-vortex structure. Furthermore, the critical Dean number for bifurcation and the semi-analytical expressions of stream function and axial velocity are given by using Galerkin technique. The result of calculation is consistent with the theoretical criterion.展开更多
The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how t...The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how the towed body and towing cable work under certain towing speed.This paper has presented a direct algorithm using Runge-Kutta method for steady-state solution of long slender cylindrical structures and compared to the time iteration calculation;the direct algorithm spends much less time than the time-iteration scheme.Therefore, the direct algorithm proposed in this paper is quite efficient in providing credible reference for marine engineering applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12202488 and 12002377)the Natural Science Program of National University of Defense Technology(Grant No.ZK22-30)Independent Cultivation Project for Young Talents in College of Aerospace Science and Engineering.
基金supported by the National Basic Research Program of China(Grant No.2012CB825601)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-01-4)+1 种基金the National Natural Science Foundation of China(Grant Nos.41031066,41231068,41074121&41074122)the Specialized Research Fund for State Key Laboratories
文摘This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it to magnetohydrodynamics(MHD)equations.The improved CESE method can improve the solution quality even with a large disparity in the Courant number(CFL)when using a fixed global marching time.Moreover,for a small CFL(say<0.1),the method can significantly reduce the numerical dissipation and retain the solution quality,which are verified by two benchmark problems.And meanwhile,comparison with the original CESE scheme shows better resolution of the improved scheme results.Finally,we demonstrate its validation through the application of this method in three-dimensional coronal dynamical structure with dipole magnetic fields and measured solar surface magnetic fields as the initial input.
基金supported by the National Natural Science Foundation of China(Grant Nos.91427302,11474155,11774146,and 11774147)the Fundamental Research Funds for the Central Universities(Grant No.020414380045)
文摘Steady structures originating from dynamic self-assembly have begun to show their advantages in new generation materials, and pose challenges to equilibrium self-assembly. In view of the important role of confinement in self-assembly, here, we propose a new type of confinement leading to dynamic steady structures, which opens a new window for the conventional confinement.In our model, we consider the self-assembly of ellipsoids in 2D circular confinement via the boundary performing periodically stretching and contracting oscillation. Langevin dynamics simulations reveal the achievement of non-equilibrium steady structures under appropriate boundary motions, which are novel smectic structures with stable topological defects. Different from the confinement with a static boundary, ellipsoids close to the boundary have variable orientations depending on the boundary motion.Order-order structural transitions, accompanied by the symmetry change and varied defect number, occur with the change of oscillating amplitude and/or frequency of the boundary. Slow and fast dynamics are distinguished according to whether structural rearrangements and energetic adjustment happen or not. The collective motion of confined ellipsoids, aroused by the work performed on the system, is the key factor determining both the structure and dynamics of the self-assembly. Our results not only achieve novel textures of circular confined liquid crystals, but also inspire us to reconsider the self-assembly within the living organisms.
文摘The number and distribution of the singular points of streamlines in the cross-section of steady flow through a curved tube ate discussed by using the method of topological structure analysis. And a theoretical criterion is obtained for the bifurcation of flow vortexes for the secondary flow turning from two-vortex structure into four-vortex structure. Furthermore, the critical Dean number for bifurcation and the semi-analytical expressions of stream function and axial velocity are given by using Galerkin technique. The result of calculation is consistent with the theoretical criterion.
基金the National Natural Science Foundation of China(Nos.51009092 and 50909061)the Doctoral Foundation of Education Ministry of China (No.20090073120013)the National High Technology Research and Development Program (863) of China (No.2008AA092301-1)
文摘The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how the towed body and towing cable work under certain towing speed.This paper has presented a direct algorithm using Runge-Kutta method for steady-state solution of long slender cylindrical structures and compared to the time iteration calculation;the direct algorithm spends much less time than the time-iteration scheme.Therefore, the direct algorithm proposed in this paper is quite efficient in providing credible reference for marine engineering applications.