In this paper, a compensated compactness framework is established for sonicsubsonic approximate solutions to the n-dimensional (n ≥ 2) Euler equations for steady irrotational flow that may contain stagnation points...In this paper, a compensated compactness framework is established for sonicsubsonic approximate solutions to the n-dimensional (n ≥ 2) Euler equations for steady irrotational flow that may contain stagnation points. This compactness framework holds provided that the approximate solutions are uniformly bounded and satisfy Hloc^-1(Ω) compactness conditions. As illustration, we show the existence of sonic-subsonic weak solution to n-dimensional (n ≥ 2) Euler equations for steady irrotational flow past obstacles or through an infinitely long nozzle. This is the first result concerning the sonic-subsonic limit for n-dimension (n ≥ 3).展开更多
基金supported in part by NSFC (10825102) for distinguished youth scholarNational Basic Research Program of China (973 Program) under Grant No.2011CB808002
文摘In this paper, a compensated compactness framework is established for sonicsubsonic approximate solutions to the n-dimensional (n ≥ 2) Euler equations for steady irrotational flow that may contain stagnation points. This compactness framework holds provided that the approximate solutions are uniformly bounded and satisfy Hloc^-1(Ω) compactness conditions. As illustration, we show the existence of sonic-subsonic weak solution to n-dimensional (n ≥ 2) Euler equations for steady irrotational flow past obstacles or through an infinitely long nozzle. This is the first result concerning the sonic-subsonic limit for n-dimension (n ≥ 3).