高压脉冲电场(Pulsed Electric Field,PEF)是一项极具前景的食品非热杀菌技术,其处理关键部件——处理室直接影响杀菌效果。作者设计了电场分布均匀、处理物料容量可调、安全可靠的PEF处理室,应用该PEF处理室对接种大肠杆菌的液蛋进...高压脉冲电场(Pulsed Electric Field,PEF)是一项极具前景的食品非热杀菌技术,其处理关键部件——处理室直接影响杀菌效果。作者设计了电场分布均匀、处理物料容量可调、安全可靠的PEF处理室,应用该PEF处理室对接种大肠杆菌的液蛋进行杀菌,当电场强度为34.2 kV/cm处理时间为400μs时,原样品菌体浓度为10^6-10^7cfu/mL,大肠杆菌细菌数量降低了约5.05个对数,从而说明作者设计的静态处理室是可行的,可以进行杀菌钝酶等相关机理研究。展开更多
Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 w...Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 was 12.4mg/(m2·h) and the emission range of CO2 was 8.7-16.6g/(m2·d) (gross CO2 flux) during plant growth period. CO2 emission rate in the day was stronger than that at night, and the daily peak appears at 19:00. The mire plants in the Sanjiang Plain begin to sprout at the end of April. The aboveground biomass of the mire plants increased from zero to the peak from July to September and showed single peak form. The aboveground biomass of Carex lasiocarpa (464.8g/m2) was lower than that of Deyeuxia platyphylla (530.8g/m2), but the underground biomass was higher than that of Deyeuxia platyphylla. Gross CO2 flux showed the significance positive correlation relationship with plant biomass. Gross CO2 flux and CH4 emission were also correlated with soil temperature (0-5cm) and water temperature. However, the highest CH4 emission rate lagged behind the highest soil temperature in the root area during plant growth period. The data also indicated that wet and warm conditions during the early spring led to greater value of CH4 emission flux. Inundation is the necessary condition for the existence of methane bacteria, but there is no significant positive correlation between the inundation depth and CH4 emission rate in this region. Within the same growing season and under the same inundation condition, the variations of CH4 emission rate could be markedly different.展开更多
Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas...Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.展开更多
A better understanding of nitrogen (N) transformation in agricultural soils is crucial for the development of sustainable and environmental-friendly N fertilizer management and the proposal of effective N20 mitigati...A better understanding of nitrogen (N) transformation in agricultural soils is crucial for the development of sustainable and environmental-friendly N fertilizer management and the proposal of effective N20 mitigation strategies. This study aimed: i) to elucidate the seasonal dynamic of gross nitrification rate and N20 emission, ii) to determine the influence of soil conditions on the gross nitrification, and iii) to confirm the relationship between gross nitrification and N20 emissions in the soil of an apple orchard in Yantai, Northeast China. The gross nitrification rates and N20 fluxes were examined from March to October in 2009, 2010, and 2011 using the barometric process separation (BaPS) technique and the static chamber method. During the wet seasons gross nitrification rates were 1.64 times higher than those under dry season conditions. Multiple regression analysis revealed that gross nitrification rates were significantly correlated with soil temperature and soil water-filled pore space (WFPS). The relationship between gross nitrification rates and soil WFPS followed an optimum curve peaking at 60% WFPS. Nitrous oxide fluxes varied widely from March to October and were stimulated by N fertilizer application. Statistically significant positive correlations were found between gross nitrification rates and soil N20 emissions. Further evaluation indicated that gross nitrification contributed significantly to N20 formation during the dry season (about 86%) but to a lesser degree during the wet season (about 51%). Therefore, gross nitrification is a key process for the formation of N20 in soils of apple orchard ecosystems of the geographical region.展开更多
Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was compos...Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.展开更多
文摘高压脉冲电场(Pulsed Electric Field,PEF)是一项极具前景的食品非热杀菌技术,其处理关键部件——处理室直接影响杀菌效果。作者设计了电场分布均匀、处理物料容量可调、安全可靠的PEF处理室,应用该PEF处理室对接种大肠杆菌的液蛋进行杀菌,当电场强度为34.2 kV/cm处理时间为400μs时,原样品菌体浓度为10^6-10^7cfu/mL,大肠杆菌细菌数量降低了约5.05个对数,从而说明作者设计的静态处理室是可行的,可以进行杀菌钝酶等相关机理研究。
文摘Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 was 12.4mg/(m2·h) and the emission range of CO2 was 8.7-16.6g/(m2·d) (gross CO2 flux) during plant growth period. CO2 emission rate in the day was stronger than that at night, and the daily peak appears at 19:00. The mire plants in the Sanjiang Plain begin to sprout at the end of April. The aboveground biomass of the mire plants increased from zero to the peak from July to September and showed single peak form. The aboveground biomass of Carex lasiocarpa (464.8g/m2) was lower than that of Deyeuxia platyphylla (530.8g/m2), but the underground biomass was higher than that of Deyeuxia platyphylla. Gross CO2 flux showed the significance positive correlation relationship with plant biomass. Gross CO2 flux and CH4 emission were also correlated with soil temperature (0-5cm) and water temperature. However, the highest CH4 emission rate lagged behind the highest soil temperature in the root area during plant growth period. The data also indicated that wet and warm conditions during the early spring led to greater value of CH4 emission flux. Inundation is the necessary condition for the existence of methane bacteria, but there is no significant positive correlation between the inundation depth and CH4 emission rate in this region. Within the same growing season and under the same inundation condition, the variations of CH4 emission rate could be markedly different.
基金Under the auspices of National Natural Science Foundation of China(No.41101080)Shandong Natural Science Foundation of China(No.ZR2014DQ028,ZR2015DM004)
文摘Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest of China (No. 201103003)the Earmarked Fund for China Agriculture Research System (No. CARS-28)
文摘A better understanding of nitrogen (N) transformation in agricultural soils is crucial for the development of sustainable and environmental-friendly N fertilizer management and the proposal of effective N20 mitigation strategies. This study aimed: i) to elucidate the seasonal dynamic of gross nitrification rate and N20 emission, ii) to determine the influence of soil conditions on the gross nitrification, and iii) to confirm the relationship between gross nitrification and N20 emissions in the soil of an apple orchard in Yantai, Northeast China. The gross nitrification rates and N20 fluxes were examined from March to October in 2009, 2010, and 2011 using the barometric process separation (BaPS) technique and the static chamber method. During the wet seasons gross nitrification rates were 1.64 times higher than those under dry season conditions. Multiple regression analysis revealed that gross nitrification rates were significantly correlated with soil temperature and soil water-filled pore space (WFPS). The relationship between gross nitrification rates and soil WFPS followed an optimum curve peaking at 60% WFPS. Nitrous oxide fluxes varied widely from March to October and were stimulated by N fertilizer application. Statistically significant positive correlations were found between gross nitrification rates and soil N20 emissions. Further evaluation indicated that gross nitrification contributed significantly to N20 formation during the dry season (about 86%) but to a lesser degree during the wet season (about 51%). Therefore, gross nitrification is a key process for the formation of N20 in soils of apple orchard ecosystems of the geographical region.
文摘Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.