电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关...电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。本文围绕模型类电池状态估计方法,综述了国内外在锂离子电池模型构建、SOC及SOH估计方法方面的研究进展;指出了模型类状态估计方法存在的难点和局限,提出了今后研究重点。展开更多
针对当前数据驱动的方法在估计锂电池的健康状态(SOH)时准确率较低的问题,提出了一种新的锂电池SOH在线估计方法。在对锂电池的SOH进行预测之前,利用生成对抗网络(GAN)对原始的锂电池数据进行数据增强,扩充了训练样本,利用卷积神经网络(...针对当前数据驱动的方法在估计锂电池的健康状态(SOH)时准确率较低的问题,提出了一种新的锂电池SOH在线估计方法。在对锂电池的SOH进行预测之前,利用生成对抗网络(GAN)对原始的锂电池数据进行数据增强,扩充了训练样本,利用卷积神经网络(CNN)与长短期记忆网络(LSTM)提取了输入数据的特征并对锂电池的SOH进行在线估计。实验结果表明,该方法相比于其他主流的数据驱动的方法,具有更高的估计准确率,在B0005锂电池单体上分别从充放电循环的30%、50%、70%开始估计SOH的均方根误差(root mean square error,RMSE)为0.0022、0.0022、0.0014。展开更多
准确估计锂离子电池健康状态(state of health,SOH)是保证电动汽车高效安全持久运行的关键。利用数据驱动方法可以提高SOH估计的精度,然而该方法的SOH估计精度高度依赖于所选择的特征与估计模型。特征之间的冗余性和估计模型泛化性不足...准确估计锂离子电池健康状态(state of health,SOH)是保证电动汽车高效安全持久运行的关键。利用数据驱动方法可以提高SOH估计的精度,然而该方法的SOH估计精度高度依赖于所选择的特征与估计模型。特征之间的冗余性和估计模型泛化性不足都将影响电池SOH的准确估计。为了减小数据驱动特征之间的冗余度,增加模型的泛化性并提升SOH估计精度,提出了一种基于主成分分析与鲸鱼优化算法(whale optimization algorithm,WOA)-Elman的SOH估计方法。首先,从充电曲线中提取并选择与锂离子电池老化高度相关的特征,利用主成分分析方法进行特征降维,减小特征之间的冗余度,然后,采用WOA方法优化Elman模型的初始权值与初始阈值,建立WOA-Elman模型,以B01号电池测试数据训练模型,利用B02与B03号电池进行验证,同时,对比常用的长短期记忆神经网络、支持向量回归和极限学习机以及未优化的Elman模型,结果显示,WOA-Elman估计模型的均方根误差为1.2113%。最后,分别采用3组电池实验测试数据交替作为训练集,对其余两组电池的SOH进行估计验证,估计结果的均方根偏差最大仅为0.1771%。因此,本工作的方法可以更准确地估计电池SOH,并且具有更好的泛化性能。展开更多
锂离子电池的荷电状态(State of charge,SOC)和健康状态(State of health,SOH)是电池储能系统在运维过程中所需要估算的重要参数。为了能够对电池状态进行可靠估计,采用深度学习方法中的简单循环单元(Simple recurrent unit,SRU)来实现...锂离子电池的荷电状态(State of charge,SOC)和健康状态(State of health,SOH)是电池储能系统在运维过程中所需要估算的重要参数。为了能够对电池状态进行可靠估计,采用深度学习方法中的简单循环单元(Simple recurrent unit,SRU)来实现对电池SOC和SOH的联合估计。首先,通过利用SRU在处理时序问题上的优势,建立了基于SRU的电池SOC估计模型;接着,给模型引入了数据单元的输入形式,并使用含有电池老化信息的样本数据来对模型进行训练,使得训练好的模型能够实现任意电池老化程度下的SOC估计;最后,通过对该模型输出的SOC估计值中所隐含的老化信息进行挖掘,实现对电池SOH的估计。试验结果表明,该联合估计方法可以实现电池SOC与SOH的准确估计,并且对不同种类的电池也有较好的适用能力。展开更多
电化学储能是现代电力系统中不可缺少的一环,其特点是能量密度大、响应速度快、转换效率高、建设周期短、站址选择多等。储能电站的应用场景非常宽泛,如在电源侧平滑出力波动及处理跟踪、电源调频辅助服务、备用电源等;电网侧用来参与...电化学储能是现代电力系统中不可缺少的一环,其特点是能量密度大、响应速度快、转换效率高、建设周期短、站址选择多等。储能电站的应用场景非常宽泛,如在电源侧平滑出力波动及处理跟踪、电源调频辅助服务、备用电源等;电网侧用来参与电网调峰调频、优化电网潮流分布、改善电能质量、虚拟电厂、延缓输电设备拥堵升级、微网等;用户侧可以完成削峰填谷、智能交通、社区储能、需量电费管理等。储能电站在快速发展的同时,安全是第一要素。而储能系统安全的关键在于电池系统的安全,在于如何精确预估电池的健康状态。储能电站电池的健康状态评估对电站的日常维护成本、健康运行及运维工作量等起关键性作用。综述了电池健康状态SOH(state of health)的影响因素,分析了线性误差预测方法、粒子群结合BP神经网络法、动态贝叶斯网络法的研究过程及结论验证,探讨了不同评估方法的可行性。在完善电池健康状态评估算法理论体系、实际应用技术研究方面具有潜在价值。展开更多
文摘电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。本文围绕模型类电池状态估计方法,综述了国内外在锂离子电池模型构建、SOC及SOH估计方法方面的研究进展;指出了模型类状态估计方法存在的难点和局限,提出了今后研究重点。
文摘针对当前数据驱动的方法在估计锂电池的健康状态(SOH)时准确率较低的问题,提出了一种新的锂电池SOH在线估计方法。在对锂电池的SOH进行预测之前,利用生成对抗网络(GAN)对原始的锂电池数据进行数据增强,扩充了训练样本,利用卷积神经网络(CNN)与长短期记忆网络(LSTM)提取了输入数据的特征并对锂电池的SOH进行在线估计。实验结果表明,该方法相比于其他主流的数据驱动的方法,具有更高的估计准确率,在B0005锂电池单体上分别从充放电循环的30%、50%、70%开始估计SOH的均方根误差(root mean square error,RMSE)为0.0022、0.0022、0.0014。
文摘准确估计锂离子电池健康状态(state of health,SOH)是保证电动汽车高效安全持久运行的关键。利用数据驱动方法可以提高SOH估计的精度,然而该方法的SOH估计精度高度依赖于所选择的特征与估计模型。特征之间的冗余性和估计模型泛化性不足都将影响电池SOH的准确估计。为了减小数据驱动特征之间的冗余度,增加模型的泛化性并提升SOH估计精度,提出了一种基于主成分分析与鲸鱼优化算法(whale optimization algorithm,WOA)-Elman的SOH估计方法。首先,从充电曲线中提取并选择与锂离子电池老化高度相关的特征,利用主成分分析方法进行特征降维,减小特征之间的冗余度,然后,采用WOA方法优化Elman模型的初始权值与初始阈值,建立WOA-Elman模型,以B01号电池测试数据训练模型,利用B02与B03号电池进行验证,同时,对比常用的长短期记忆神经网络、支持向量回归和极限学习机以及未优化的Elman模型,结果显示,WOA-Elman估计模型的均方根误差为1.2113%。最后,分别采用3组电池实验测试数据交替作为训练集,对其余两组电池的SOH进行估计验证,估计结果的均方根偏差最大仅为0.1771%。因此,本工作的方法可以更准确地估计电池SOH,并且具有更好的泛化性能。
文摘锂离子电池的荷电状态(State of charge,SOC)和健康状态(State of health,SOH)是电池储能系统在运维过程中所需要估算的重要参数。为了能够对电池状态进行可靠估计,采用深度学习方法中的简单循环单元(Simple recurrent unit,SRU)来实现对电池SOC和SOH的联合估计。首先,通过利用SRU在处理时序问题上的优势,建立了基于SRU的电池SOC估计模型;接着,给模型引入了数据单元的输入形式,并使用含有电池老化信息的样本数据来对模型进行训练,使得训练好的模型能够实现任意电池老化程度下的SOC估计;最后,通过对该模型输出的SOC估计值中所隐含的老化信息进行挖掘,实现对电池SOH的估计。试验结果表明,该联合估计方法可以实现电池SOC与SOH的准确估计,并且对不同种类的电池也有较好的适用能力。
文摘电化学储能是现代电力系统中不可缺少的一环,其特点是能量密度大、响应速度快、转换效率高、建设周期短、站址选择多等。储能电站的应用场景非常宽泛,如在电源侧平滑出力波动及处理跟踪、电源调频辅助服务、备用电源等;电网侧用来参与电网调峰调频、优化电网潮流分布、改善电能质量、虚拟电厂、延缓输电设备拥堵升级、微网等;用户侧可以完成削峰填谷、智能交通、社区储能、需量电费管理等。储能电站在快速发展的同时,安全是第一要素。而储能系统安全的关键在于电池系统的安全,在于如何精确预估电池的健康状态。储能电站电池的健康状态评估对电站的日常维护成本、健康运行及运维工作量等起关键性作用。综述了电池健康状态SOH(state of health)的影响因素,分析了线性误差预测方法、粒子群结合BP神经网络法、动态贝叶斯网络法的研究过程及结论验证,探讨了不同评估方法的可行性。在完善电池健康状态评估算法理论体系、实际应用技术研究方面具有潜在价值。