In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem...In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.展开更多
In this paper, for a coupled system of wave equations with iNeumann boundary controls, the exact boundary synchronization is taken into consideration. Results are then extended to the case of synchronization by groups...In this paper, for a coupled system of wave equations with iNeumann boundary controls, the exact boundary synchronization is taken into consideration. Results are then extended to the case of synchronization by groups. Moreover, the determination of the state of synchronization by groups is discussed with details for the synchronization and for the synchronization by 3-groups, respectively.展开更多
基金the National Basic Research Programthe National Natural Science Foundation of China(Grant No.2005CB321703)+2 种基金Scientific Research Fund of Hunan Provincial Education Departmentthe Outstanding Youth Scientist of the National Natural Science Foundation of China(Grant No.10625106)the National Basic Research Program of China(Grant No.2005CB321701)
文摘In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
基金supported by the National Natural Science Foundation of China(No.11121101)the National Basic Research Program of China(No.2013CB834100)
文摘In this paper, for a coupled system of wave equations with iNeumann boundary controls, the exact boundary synchronization is taken into consideration. Results are then extended to the case of synchronization by groups. Moreover, the determination of the state of synchronization by groups is discussed with details for the synchronization and for the synchronization by 3-groups, respectively.