In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
In this paper bottom scours in front of vertical breakwaters by standing waves are systematically investigated, the scouring patterns, criterion for differentiating the scouring patterns and scouring mechanism are dis...In this paper bottom scours in front of vertical breakwaters by standing waves are systematically investigated, the scouring patterns, criterion for differentiating the scouring patterns and scouring mechanism are discussed ; a formula of maximum depth of scouring trough considering sediment size is given; and influence of mound foundation on bottom scours is investigated.展开更多
Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which ca...Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which can be used to calculate the wave particle velocity and wave pressure, is suitable to the complicated topography whose relative depth (d/lambda(0), ratio of the characteristic water depth to the characteristic wavelength in deep-water) is equal to or smaller than one. The governing equations are discretized with the improved 2-D Crank-Nicolson method in which the first-order derivatives are corrected by Taylor series expansion, And the general boundary conditions with an arbitrary reflection coefficient and phase shift are adopted in the model. The surface elevation, horizontal and vertical velocity components and wave pressure of standing waves are numerically calculated. The results show that the numerical model can effectively simulate the complicated standing waves, and the general boundary conditions possess good adaptability.展开更多
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
文摘In this paper bottom scours in front of vertical breakwaters by standing waves are systematically investigated, the scouring patterns, criterion for differentiating the scouring patterns and scouring mechanism are discussed ; a formula of maximum depth of scouring trough considering sediment size is given; and influence of mound foundation on bottom scours is investigated.
基金This subject was partly supported by the National Excellent Youth Foundation of China (Grant No. 49825161)
文摘Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which can be used to calculate the wave particle velocity and wave pressure, is suitable to the complicated topography whose relative depth (d/lambda(0), ratio of the characteristic water depth to the characteristic wavelength in deep-water) is equal to or smaller than one. The governing equations are discretized with the improved 2-D Crank-Nicolson method in which the first-order derivatives are corrected by Taylor series expansion, And the general boundary conditions with an arbitrary reflection coefficient and phase shift are adopted in the model. The surface elevation, horizontal and vertical velocity components and wave pressure of standing waves are numerically calculated. The results show that the numerical model can effectively simulate the complicated standing waves, and the general boundary conditions possess good adaptability.