Feature detection and matching play important roles in many fields of computer vision, such as image understanding, feature recognition, 3D-reconstruction, video analysis, etc. Extracting features is usually the first...Feature detection and matching play important roles in many fields of computer vision, such as image understanding, feature recognition, 3D-reconstruction, video analysis, etc. Extracting features is usually the first step for feature detection or matching, and the gradient feature is one of the most used selections. In this paper, a new image feature-absence importance (AI) feature, which can directly characterize the local structure information, is proposed. Greatly different from the most existing features, the proposed absence importance feature is mainly based on the consideration that the absence of the important pixel will have a great effect on the local structure. Two absence importance features, mean absence importance (MAI) and standard deviation absence importance (SDAI), are defined and used subsequently to construct new algorithms for feature detection and matching. Experiments demonstrate that the proposed absence importance features can be used as an important complement of the gradient feature and applied successfully to the fields of feature detection and matching.展开更多
Purpose:With more and more digital collections of various information resources becoming available,also increasing is the challenge of assigning subject index terms and classes from quality knowledge organization syst...Purpose:With more and more digital collections of various information resources becoming available,also increasing is the challenge of assigning subject index terms and classes from quality knowledge organization systems.While the ultimate purpose is to understand the value of automatically produced Dewey Decimal Classification(DDC)classes for Swedish digital collections,the paper aims to evaluate the performance of six machine learning algorithms as well as a string-matching algorithm based on characteristics of DDC.Design/methodology/approach:State-of-the-art machine learning algorithms require at least 1,000 training examples per class.The complete data set at the time of research involved 143,838 records which had to be reduced to top three hierarchical levels of DDC in order to provide sufficient training data(totaling 802 classes in the training and testing sample,out of 14,413 classes at all levels).Findings:Evaluation shows that Support Vector Machine with linear kernel outperforms other machine learning algorithms as well as the string-matching algorithm on average;the string-matching algorithm outperforms machine learning for specific classes when characteristics of DDC are most suitable for the task.Word embeddings combined with different types of neural networks(simple linear network,standard neural network,1 D convolutional neural network,and recurrent neural network)produced worse results than Support Vector Machine,but reach close results,with the benefit of a smaller representation size.Impact of features in machine learning shows that using keywords or combining titles and keywords gives better results than using only titles as input.Stemming only marginally improves the results.Removed stop-words reduced accuracy in most cases,while removing less frequent words increased it marginally.The greatest impact is produced by the number of training examples:81.90%accuracy on the training set is achieved when at least 1,000 records per class are available in the training set,and 66.13%when too few recor展开更多
基金supported by National Natural Science Foundation of China(Nos.61201395,61272394,61472119 and 61472373)the program for Science & Technology Innovation Talents in Universities of Henan Province(No.13HASTIT039)the Program for Young Backbone Teachers in Universities of Henan Province(Nos.2012GGJS-057 and 2013GGJS-052)
文摘Feature detection and matching play important roles in many fields of computer vision, such as image understanding, feature recognition, 3D-reconstruction, video analysis, etc. Extracting features is usually the first step for feature detection or matching, and the gradient feature is one of the most used selections. In this paper, a new image feature-absence importance (AI) feature, which can directly characterize the local structure information, is proposed. Greatly different from the most existing features, the proposed absence importance feature is mainly based on the consideration that the absence of the important pixel will have a great effect on the local structure. Two absence importance features, mean absence importance (MAI) and standard deviation absence importance (SDAI), are defined and used subsequently to construct new algorithms for feature detection and matching. Experiments demonstrate that the proposed absence importance features can be used as an important complement of the gradient feature and applied successfully to the fields of feature detection and matching.
文摘Purpose:With more and more digital collections of various information resources becoming available,also increasing is the challenge of assigning subject index terms and classes from quality knowledge organization systems.While the ultimate purpose is to understand the value of automatically produced Dewey Decimal Classification(DDC)classes for Swedish digital collections,the paper aims to evaluate the performance of six machine learning algorithms as well as a string-matching algorithm based on characteristics of DDC.Design/methodology/approach:State-of-the-art machine learning algorithms require at least 1,000 training examples per class.The complete data set at the time of research involved 143,838 records which had to be reduced to top three hierarchical levels of DDC in order to provide sufficient training data(totaling 802 classes in the training and testing sample,out of 14,413 classes at all levels).Findings:Evaluation shows that Support Vector Machine with linear kernel outperforms other machine learning algorithms as well as the string-matching algorithm on average;the string-matching algorithm outperforms machine learning for specific classes when characteristics of DDC are most suitable for the task.Word embeddings combined with different types of neural networks(simple linear network,standard neural network,1 D convolutional neural network,and recurrent neural network)produced worse results than Support Vector Machine,but reach close results,with the benefit of a smaller representation size.Impact of features in machine learning shows that using keywords or combining titles and keywords gives better results than using only titles as input.Stemming only marginally improves the results.Removed stop-words reduced accuracy in most cases,while removing less frequent words increased it marginally.The greatest impact is produced by the number of training examples:81.90%accuracy on the training set is achieved when at least 1,000 records per class are available in the training set,and 66.13%when too few recor