针对当用户评分较少时,推荐系统由于数据稀疏推荐性能显著降低这一问题,介绍了协同深度学习算法(Collaborative In Deep Learning, CIDL).本算法首先对大量数据进行深度学习,然后对数据文本进行挖掘提取词汇表,最后对评级(反馈)矩阵进...针对当用户评分较少时,推荐系统由于数据稀疏推荐性能显著降低这一问题,介绍了协同深度学习算法(Collaborative In Deep Learning, CIDL).本算法首先对大量数据进行深度学习,然后对数据文本进行挖掘提取词汇表,最后对评级(反馈)矩阵进行协同过滤,从而得出对用户的推荐项目.本文使用真实的电影数据进行实验,与另外四种优秀算法进行对比,证明该算法可以真实有效得解决由于数据稀疏使得性能降低的问题,并提高推荐的准确度.展开更多
可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多...可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。展开更多
文摘针对当用户评分较少时,推荐系统由于数据稀疏推荐性能显著降低这一问题,介绍了协同深度学习算法(Collaborative In Deep Learning, CIDL).本算法首先对大量数据进行深度学习,然后对数据文本进行挖掘提取词汇表,最后对评级(反馈)矩阵进行协同过滤,从而得出对用户的推荐项目.本文使用真实的电影数据进行实验,与另外四种优秀算法进行对比,证明该算法可以真实有效得解决由于数据稀疏使得性能降低的问题,并提高推荐的准确度.
文摘可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。