A monodispersed latex from styrene(St), methyl methacrylate(MMA) and acrylic acid(AA) was synthesized with the soap free emulsion polymerization, and the formation of colloidal crystal by evaporating the water of the ...A monodispersed latex from styrene(St), methyl methacrylate(MMA) and acrylic acid(AA) was synthesized with the soap free emulsion polymerization, and the formation of colloidal crystal by evaporating the water of the latex was investigated. It has been confirmed that there exist two array manners, i.e., hexagonal and square array, and two packing modes, i.e., hexagonal packing and face-centered cubic packing in the forming process of colloidal crystals. The square array originated from the dislocation of the particle in the hexagonal array, the area of it depends on the temperature in the forming process. At a lower temperature such as at 0 ℃, relatively large areas of square array were observed in the formed colloidal crystal.展开更多
The upcoming Square Kilometre Array (SKA) radio telescope will become the largest astronomical observation facility,and is expected to introduce revolutionary changes in major fields of natural sciences.These revoluti...The upcoming Square Kilometre Array (SKA) radio telescope will become the largest astronomical observation facility,and is expected to introduce revolutionary changes in major fields of natural sciences.These revolutionary changes help us to answer the fundamental questions related to the origins of the universe,life,cosmic magnetic field,the nature of gravity,and to search for extraterrestrial civilizations [1].展开更多
w-Projection is a wide-field imaging technique that is widely used in radio synthesis arrays. Processing the wide-field big data generated by the future Square Kilometre Array(SKA) will require significant updates to ...w-Projection is a wide-field imaging technique that is widely used in radio synthesis arrays. Processing the wide-field big data generated by the future Square Kilometre Array(SKA) will require significant updates to current methods to significantly reduce the time consumed on data processing. Data loading and gridding are found to be two major time-consuming tasks in w-projection. In this paper, we investigate two parallel methods of accelerating w-projection processing on multiple nodes: the hybrid Message Passing Interface(MPI) and Open Multi-Processing(OpenMP) method based on multicore Central Processing Units(CPUs) and the hybrid MPI and Compute Unified Device Architecture(CUDA)method based on Graphics Processing Units(GPUs). Both methods are successfully employed and operated in various computational environments, confirming their robustness. The experimental results show that the total runtime of both MPI + OpenMP and MPI + CUDA methods is significantly shorter than that of single-thread processing. MPI + CUDA generally shows faster performance when running on multiple nodes than MPI + OpenMP, especially on large numbers of nodes. The single-precision GPU-based processing yields faster computation than the double-precision processing; while the single-and doubleprecision CPU-based processing shows consistent computational performance. The gridding time remarkably increases when the support size of the convolution kernel is larger than 8 and the image size is larger than 2,048 pixels. The present research offers useful guidance for developing SKA imaging pipelines.展开更多
With the size of astronomical data archives continuing to increase at an enormous rate, the providers and end users of astronomical data sets will benefit from effective data compression techniques. This paper explore...With the size of astronomical data archives continuing to increase at an enormous rate, the providers and end users of astronomical data sets will benefit from effective data compression techniques. This paper explores different lossless data compression techniques and aims to find an optimal compression algorithm to compress astronomical data obtained by the Square Kilometre Array (SKA), which are new and unique in the field of radio astronomy. It was required that the compressed data sets should be lossless and that they should be compressed while the data are being read. The project was carried out in conjunction with the SKA South Africa office. Data compression reduces the time taken and the bandwidth used when transferring files, and it can also reduce the costs involved with data storage. The SKA uses the Hierarchical Data Format (HDF5) to store the data collected from the radio telescopes, with the data used in this study ranging from 29 MB to 9 GB in size. The compression techniques investigated in this study include SZIP, GZIP, the LZF filter, LZ4 and the Fully Adaptive Prediction Error Coder (FAPEC). The algorithms and methods used to perform the compression tests are discussed and the results from the three phases of testing are presented, followed by a brief discussion on those results.展开更多
Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is ...Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.展开更多
The Square Kilometre Array(SKA)project consists of delivering two largest radio telescope arrays being built by the SKA Observatory(SKAO),which is an intergovernmental organization bringing together nations from aroun...The Square Kilometre Array(SKA)project consists of delivering two largest radio telescope arrays being built by the SKA Observatory(SKAO),which is an intergovernmental organization bringing together nations from around the world with China being one of the major member countries.The computing resources needed to process,distribute,curate and use the vast amount of data that will be generated by the SKA telescopes are too large for the SKAO to manage on its own.To address this challenge,the SKAO is working with the international community to create a shared,distributed data,computing and networking capability called the SKA Regional Centre Alliance.In this model,the SKAO will be supported by a global network of SKA Regional Centres(SRCs)distributed around the world in its member countries to build an end-to-end science data system that will provide astronomers with high-quality science products.SRCs undertake deep processing,scientific analysis,and long-term storage of the SKA data,as well as user support.China has been actively participating in and promoting the construction of SRCs.This paper introduces the international cooperation and ongoing prototyping of the global SRC network,the basis for the construction of the China SRC and describes in detail the progress of the China SRC prototype.The paper also presents examples of scientific applications of SKA precursor and pathfinder telescopes performed using resources from the China SRC prototype.Finally,the future prospects of the China SRC are presented.展开更多
文摘A monodispersed latex from styrene(St), methyl methacrylate(MMA) and acrylic acid(AA) was synthesized with the soap free emulsion polymerization, and the formation of colloidal crystal by evaporating the water of the latex was investigated. It has been confirmed that there exist two array manners, i.e., hexagonal and square array, and two packing modes, i.e., hexagonal packing and face-centered cubic packing in the forming process of colloidal crystals. The square array originated from the dislocation of the particle in the hexagonal array, the area of it depends on the temperature in the forming process. At a lower temperature such as at 0 ℃, relatively large areas of square array were observed in the formed colloidal crystal.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0404600)the International Cooperation Bureau of the Chinese Academy of Sciences(Grant No.114231KYSB20170003)
文摘The upcoming Square Kilometre Array (SKA) radio telescope will become the largest astronomical observation facility,and is expected to introduce revolutionary changes in major fields of natural sciences.These revolutionary changes help us to answer the fundamental questions related to the origins of the universe,life,cosmic magnetic field,the nature of gravity,and to search for extraterrestrial civilizations [1].
基金National Key R&D Programme of China(2018YFA0404603)Chinese Academy of Sciences(114231KYSB20170003)+3 种基金National Supercomputer Centre in Guangzhou and resource of the Pawsey Supercomputing Centre funded from the Australian Government and the Government of Western Australiasupported by National Natural Science Foundation of China(U1831204 and 11703069)the Guangxi Cooperative Innovation Center of Cloud Computing and Big Data(No.1716)the Guangxi Colleges and Universities Key Laboratory of cloud computing and complex systems
文摘w-Projection is a wide-field imaging technique that is widely used in radio synthesis arrays. Processing the wide-field big data generated by the future Square Kilometre Array(SKA) will require significant updates to current methods to significantly reduce the time consumed on data processing. Data loading and gridding are found to be two major time-consuming tasks in w-projection. In this paper, we investigate two parallel methods of accelerating w-projection processing on multiple nodes: the hybrid Message Passing Interface(MPI) and Open Multi-Processing(OpenMP) method based on multicore Central Processing Units(CPUs) and the hybrid MPI and Compute Unified Device Architecture(CUDA)method based on Graphics Processing Units(GPUs). Both methods are successfully employed and operated in various computational environments, confirming their robustness. The experimental results show that the total runtime of both MPI + OpenMP and MPI + CUDA methods is significantly shorter than that of single-thread processing. MPI + CUDA generally shows faster performance when running on multiple nodes than MPI + OpenMP, especially on large numbers of nodes. The single-precision GPU-based processing yields faster computation than the double-precision processing; while the single-and doubleprecision CPU-based processing shows consistent computational performance. The gridding time remarkably increases when the support size of the convolution kernel is larger than 8 and the image size is larger than 2,048 pixels. The present research offers useful guidance for developing SKA imaging pipelines.
文摘With the size of astronomical data archives continuing to increase at an enormous rate, the providers and end users of astronomical data sets will benefit from effective data compression techniques. This paper explores different lossless data compression techniques and aims to find an optimal compression algorithm to compress astronomical data obtained by the Square Kilometre Array (SKA), which are new and unique in the field of radio astronomy. It was required that the compressed data sets should be lossless and that they should be compressed while the data are being read. The project was carried out in conjunction with the SKA South Africa office. Data compression reduces the time taken and the bandwidth used when transferring files, and it can also reduce the costs involved with data storage. The SKA uses the Hierarchical Data Format (HDF5) to store the data collected from the radio telescopes, with the data used in this study ranging from 29 MB to 9 GB in size. The compression techniques investigated in this study include SZIP, GZIP, the LZF filter, LZ4 and the Fully Adaptive Prediction Error Coder (FAPEC). The algorithms and methods used to perform the compression tests are discussed and the results from the three phases of testing are presented, followed by a brief discussion on those results.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (YJRC-2011-11).
文摘Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0404603)Chinese Academy of Sciences International Partner Program(Grant No.114231KYSB20170003)+2 种基金National Natural Science Foundation of China(Grant No.12041301)Youth Innovation Promotion AssociationChinese Academy of Sciences(Grant Nos.201664,and2021258)。
文摘The Square Kilometre Array(SKA)project consists of delivering two largest radio telescope arrays being built by the SKA Observatory(SKAO),which is an intergovernmental organization bringing together nations from around the world with China being one of the major member countries.The computing resources needed to process,distribute,curate and use the vast amount of data that will be generated by the SKA telescopes are too large for the SKAO to manage on its own.To address this challenge,the SKAO is working with the international community to create a shared,distributed data,computing and networking capability called the SKA Regional Centre Alliance.In this model,the SKAO will be supported by a global network of SKA Regional Centres(SRCs)distributed around the world in its member countries to build an end-to-end science data system that will provide astronomers with high-quality science products.SRCs undertake deep processing,scientific analysis,and long-term storage of the SKA data,as well as user support.China has been actively participating in and promoting the construction of SRCs.This paper introduces the international cooperation and ongoing prototyping of the global SRC network,the basis for the construction of the China SRC and describes in detail the progress of the China SRC prototype.The paper also presents examples of scientific applications of SKA precursor and pathfinder telescopes performed using resources from the China SRC prototype.Finally,the future prospects of the China SRC are presented.