Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Sp...Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Spray Pyrolysis Technique" by K. Usharani and A.R. Balu published in Acta Metall. Sin.展开更多
Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-r...Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.展开更多
Nickel oxide (NiO) thin film has been deposited on a glass substrate at a temperature of 390°C ± 10°C using a simple and inexpensive spray pyrolysis technique. Nickel nitrate salt solution (Ni(NO3)2&...Nickel oxide (NiO) thin film has been deposited on a glass substrate at a temperature of 390°C ± 10°C using a simple and inexpensive spray pyrolysis technique. Nickel nitrate salt solution (Ni(NO3)2·6H2O) was employed to prepare the films and the film thickness was in order of 200 ± 5 nm. The structural, optical and electrical properties of NiO films were investigated using X-ray diffraction (XRD), visible spectrum, DC conductivity and Seebeck effect measurements. The results show that X-ray diffraction techniques have shown that prepared film is polycrystalline structure type cubic phase. The measurements of optical properties (transmittance (T) and absorbance (A)) of NiO films show that higher transmittance is 37.4% within the wavelength range (300 - 900 nm). Also the results have shown that the higher absorbance is 77.7%. The results of electrical properties have shown that at room temperature electrical conductivity is 1.3 × 10-5 (Ω·cm)-1, and also results have shown that all the films are of p-type due to the negative Seebeck coefficient.展开更多
Crystalline and non-crystalline nickel oxide (NiO) thin films were obtained by spray pyrolysis technique (SPT) using nickel acetate tetrahydrate solutions onto glass substrates at different temperatures from 225 to 35...Crystalline and non-crystalline nickel oxide (NiO) thin films were obtained by spray pyrolysis technique (SPT) using nickel acetate tetrahydrate solutions onto glass substrates at different temperatures from 225 to 350℃. Structure of the as-deposited NiO thin films have been examined by X-ray diffraction (XRD) and atomic force microscope (AFM). The results showed that an amorphous structure of the films at low substrate temperature (Ts = 225℃), while at higher Ts ≥ 275℃, a cubic single phase structure of NiO film is formed. The refractive index (n) and the extinction coefficient (k) have been calculated from the corrected transmittance and reflectance measurements over the spectral range from 250 to 2400 nm. Some of the optical absorption parameters, such as optical dispersion energies, Eo and Ed, dielectric constant, ε, the average values of oscillator strength, So, wavelength of single oscillator λo and plasma frequency, ωp, have been evaluated.展开更多
ZnSe thin films are successfully deposited by spray pyrolysis deposition technique. Deposited thin films are characterized by X-ray diffraction study, and it reveals that spray-deposited ZnSe thin films are polycrysta...ZnSe thin films are successfully deposited by spray pyrolysis deposition technique. Deposited thin films are characterized by X-ray diffraction study, and it reveals that spray-deposited ZnSe thin films are polycrystalline with hexagonal crystal structure. Surface morphology is carried out by scanning electron microscopy. It shows cotton-like morphology, and optical properties, such as absorbance, transmittance, reflectance, band gap, refrac- tive index, extinction coefficient are studied. Photoluminescence shows strong emission at 497 nm. Also, spray- deposited ZnSe thin films are hydrophilic in nature, which is shown by contact angle meter.展开更多
Zinc oxide(ZnO) thin films were deposited on glass substrates by spray pyrolysis technique decomposition of zinc acetate dihydrate in an ethanol solution with 30 m L of deposition rate, the ZnO thin films were depos...Zinc oxide(ZnO) thin films were deposited on glass substrates by spray pyrolysis technique decomposition of zinc acetate dihydrate in an ethanol solution with 30 m L of deposition rate, the ZnO thin films were deposited at two different temperatures: 300 and 350℃. The substrates were heated using the solar cells method.The substrate was R217102 glass, whose size was 30×17.5×1 mm^3. The films exhibit a hexagonal wurtzite structure with a strong(002) preferred orientation. The higher value of crystallite size is attained for sprayed films at 350℃, which is probably due to an improvement of the crystallinity of the films at this point. The average transmittance of obtain films is about 90%–95%, as measured by a UV–vis analyzer. The band gap energy varies from 3.265 to 3.294 e V for the deposited Zn O thin film at 300 and 350℃, respectively. The electrical resistivity measured of our films are in the order 0.36 Ω·cm.展开更多
Thin films of SnSe and SnSe2 have been deposited using the ultrasonic spray pyrolysis(USP) technique.To the best of our knowledge this is the first report of the deposition of SnSe and SnSe2 thin films using a singl...Thin films of SnSe and SnSe2 have been deposited using the ultrasonic spray pyrolysis(USP) technique.To the best of our knowledge this is the first report of the deposition of SnSe and SnSe2 thin films using a single spray solution.The use of a single spray solution for obtaining both a p-type material,SnSe,and an n-type material,SnSe2,simplifies the deposition technique.The SnSe2 thin films have a bandgap of 1.1 eV and the SnSe thin films have a band gap of 0.9 eV.The Hall measurements were used to determine the resistivity of the thin films.The SnSe2 thin films show a resistivity of 36.73 Ωcm and n-type conductivity while the SnSe thin films show a resistivity of 180 Ωcm and p-type conductivity.展开更多
The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is neces...The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is necessary to show these mistakes or misleading statements to avoid their use in the future papers by authors and other peoples.展开更多
文摘Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Spray Pyrolysis Technique" by K. Usharani and A.R. Balu published in Acta Metall. Sin.
基金University Grants Commission(UGC),New Delhi,for the financial support through the project No.‘‘41-869/2012(SR)’’
文摘Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.
文摘Nickel oxide (NiO) thin film has been deposited on a glass substrate at a temperature of 390°C ± 10°C using a simple and inexpensive spray pyrolysis technique. Nickel nitrate salt solution (Ni(NO3)2·6H2O) was employed to prepare the films and the film thickness was in order of 200 ± 5 nm. The structural, optical and electrical properties of NiO films were investigated using X-ray diffraction (XRD), visible spectrum, DC conductivity and Seebeck effect measurements. The results show that X-ray diffraction techniques have shown that prepared film is polycrystalline structure type cubic phase. The measurements of optical properties (transmittance (T) and absorbance (A)) of NiO films show that higher transmittance is 37.4% within the wavelength range (300 - 900 nm). Also the results have shown that the higher absorbance is 77.7%. The results of electrical properties have shown that at room temperature electrical conductivity is 1.3 × 10-5 (Ω·cm)-1, and also results have shown that all the films are of p-type due to the negative Seebeck coefficient.
文摘Crystalline and non-crystalline nickel oxide (NiO) thin films were obtained by spray pyrolysis technique (SPT) using nickel acetate tetrahydrate solutions onto glass substrates at different temperatures from 225 to 350℃. Structure of the as-deposited NiO thin films have been examined by X-ray diffraction (XRD) and atomic force microscope (AFM). The results showed that an amorphous structure of the films at low substrate temperature (Ts = 225℃), while at higher Ts ≥ 275℃, a cubic single phase structure of NiO film is formed. The refractive index (n) and the extinction coefficient (k) have been calculated from the corrected transmittance and reflectance measurements over the spectral range from 250 to 2400 nm. Some of the optical absorption parameters, such as optical dispersion energies, Eo and Ed, dielectric constant, ε, the average values of oscillator strength, So, wavelength of single oscillator λo and plasma frequency, ωp, have been evaluated.
基金the financial support received throughthescheme No.F.4-1/2006(BSR)/7-167/2007(BSR)
文摘ZnSe thin films are successfully deposited by spray pyrolysis deposition technique. Deposited thin films are characterized by X-ray diffraction study, and it reveals that spray-deposited ZnSe thin films are polycrystalline with hexagonal crystal structure. Surface morphology is carried out by scanning electron microscopy. It shows cotton-like morphology, and optical properties, such as absorbance, transmittance, reflectance, band gap, refrac- tive index, extinction coefficient are studied. Photoluminescence shows strong emission at 497 nm. Also, spray- deposited ZnSe thin films are hydrophilic in nature, which is shown by contact angle meter.
基金supported in part by the National Project Research (PNR)VTRS laboratory of El–Oued University, X-ray diffraction data in this work were acquired with an instrument supported by the University of Biskra
文摘Zinc oxide(ZnO) thin films were deposited on glass substrates by spray pyrolysis technique decomposition of zinc acetate dihydrate in an ethanol solution with 30 m L of deposition rate, the ZnO thin films were deposited at two different temperatures: 300 and 350℃. The substrates were heated using the solar cells method.The substrate was R217102 glass, whose size was 30×17.5×1 mm^3. The films exhibit a hexagonal wurtzite structure with a strong(002) preferred orientation. The higher value of crystallite size is attained for sprayed films at 350℃, which is probably due to an improvement of the crystallinity of the films at this point. The average transmittance of obtain films is about 90%–95%, as measured by a UV–vis analyzer. The band gap energy varies from 3.265 to 3.294 e V for the deposited Zn O thin film at 300 and 350℃, respectively. The electrical resistivity measured of our films are in the order 0.36 Ω·cm.
基金carried out with financial assistance from the DGAPA- PAPIIT project (IN 113409)
文摘Thin films of SnSe and SnSe2 have been deposited using the ultrasonic spray pyrolysis(USP) technique.To the best of our knowledge this is the first report of the deposition of SnSe and SnSe2 thin films using a single spray solution.The use of a single spray solution for obtaining both a p-type material,SnSe,and an n-type material,SnSe2,simplifies the deposition technique.The SnSe2 thin films have a bandgap of 1.1 eV and the SnSe thin films have a band gap of 0.9 eV.The Hall measurements were used to determine the resistivity of the thin films.The SnSe2 thin films show a resistivity of 36.73 Ωcm and n-type conductivity while the SnSe thin films show a resistivity of 180 Ωcm and p-type conductivity.
文摘The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is necessary to show these mistakes or misleading statements to avoid their use in the future papers by authors and other peoples.