期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
曲边多角形域上第一类边界积分方程的机械求积算法与分裂外推 被引量:6
1
作者 黄晋 吕涛 《计算数学》 CSCD 北大核心 2004年第1期51-60,共10页
This paper presents mechanical quadrature methods for solving first-kind boundary integral equations on polygonal regions, which possesses high accuracy O(h0^3)and low computing complexities. Moreover, the multivariat... This paper presents mechanical quadrature methods for solving first-kind boundary integral equations on polygonal regions, which possesses high accuracy O(h0^3)and low computing complexities. Moreover, the multivariate asymptotic expansion of the error with hi^3(i = 1,…,d) power is shown. Using the multi-parameter asymptotic expansion, we not only get a high precisioin approximation solution by means of the splitting extrapolation, but also derive a posteriori estimation. 展开更多
关键词 曲边多角形 第一类边界积分方程 机械求积算法 分裂外推 正弦变换 收敛性
原文传递
A MULTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM FOR ELLIPTIC EIGENVALUE PROBLEM 被引量:3
2
作者 Liao, XH Zhou, AH 《Journal of Computational Mathematics》 SCIE CSCD 1998年第3期213-220,共8页
The finite element solutions of elliptic eigenvalue equations are shown to have a multi-parameter asymptotic error expansion. Based on this expansion and a splitting extrapolation technique, a parallel algorithm for s... The finite element solutions of elliptic eigenvalue equations are shown to have a multi-parameter asymptotic error expansion. Based on this expansion and a splitting extrapolation technique, a parallel algorithm for solving multi-dimensional equations with high order accuracy is developed. 展开更多
关键词 finite element multi-parameter error expansion parallel algorithm splitting extrapolation
原文传递
Splitting extrapolation based on domain decomposition for finite element approximations 被引量:1
3
作者 吕涛 冯勇 《Science China(Technological Sciences)》 SCIE EI CAS 1997年第2期144-155,共12页
Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a l... Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method. 展开更多
关键词 splitting extrapolation DOMAIN DECOMPOSITION PARALLEL algorithm.
原文传递
多角形域上Robin问题的边界积分方程的求积法与分裂外推 被引量:1
4
作者 黄晋 吕涛 申慧容 《燕山大学学报》 CAS 2004年第2期137-140,共4页
提出了解任意区域上Robin问题的边界积分方程的求积法。它拥有高精度,低复杂度。通过估计离散矩阵的特征值,证明了近似解的收敛性;同时,给出了误差的多参数奇次幂渐近展开式,利用分裂外推算法不仅得到了较高精度的近似解,而且获得了后... 提出了解任意区域上Robin问题的边界积分方程的求积法。它拥有高精度,低复杂度。通过估计离散矩阵的特征值,证明了近似解的收敛性;同时,给出了误差的多参数奇次幂渐近展开式,利用分裂外推算法不仅得到了较高精度的近似解,而且获得了后验误差估计。算例证明了该方法的有效性。 展开更多
关键词 多角形域 求积法 分裂外推 后验误差估计 ROBIN问题
下载PDF
Application of Splitting Extrapolation to Stokes Equation
5
作者 Chen Jian\|ye, Xu Di\|hong, Sun Le\|lin School of Mathematics and Statistics, Wuhan University, Whuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第01A期1-4,共4页
This paper deals with the splitting extrapolation for mixed finite element used in the approximation of the steady Stokes equation. Applying the multi variate asymptotic expansion of the error on independent grid p... This paper deals with the splitting extrapolation for mixed finite element used in the approximation of the steady Stokes equation. Applying the multi variate asymptotic expansion of the error on independent grid parameters, we can get a parallel algorithm and a global fine grid approximations with high accuracy. 展开更多
关键词 splitting extrapolation domain decomposition mixed finite element Stokes equation
下载PDF
THE SPLITTING EXTRAPOLATION FOR FINITEELEMENT METHOD
6
作者 LU Tao FENG Yong(Institute of Chengdu Computer Application, Academia Sinica, Chengdu 610041, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1997年第4期372-382,共11页
A new splitting extrapolation based on multivariate asymptotic expansionsof finite elemellt eraes for differellt mesh parameters is described. By means of splittingextrapolation, a far 3 scale problem is decomposed in... A new splitting extrapolation based on multivariate asymptotic expansionsof finite elemellt eraes for differellt mesh parameters is described. By means of splittingextrapolation, a far 3 scale problem is decomposed into many subproblems, which can besolved in parallel. 111 this paper) we prove that the splitting extrapolation algorithm possesses a high order accuracy and the computation is almost independent of the dimension ofthe problem. Moreover, an extrapolation algorithm at global fine grid points is presented,several numerical examples including interface problems are discussed. 展开更多
关键词 splitting extrapolation PARALLEL ALGORITHM DOMAIN decomposition.
原文传递
SPLITTING EXTRAPOLATIONS FOR SOLVING BOUNDARY INTEGRAL EQUATIONS OF LINEAR ELASTICITY DIRICHLET PROBLEMS ON POLYGONS BY MECHANICAL QUADRATURE METHODS
7
作者 Jin Huang Tao Lu 《Journal of Computational Mathematics》 SCIE EI CSCD 2006年第1期9-18,共10页
Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first... Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy O(h0^3) and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power hi^3 (i = 1, 2, ..., d) are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained. 展开更多
关键词 splitting extrapolation Linear elasticity Dirichlet problem Boundary integral equation of the first kind Mechanical quadrature method
原文传递
Euler-Maclaurin Expansions of Errors for Multidimensional Weakly Singular Integrals and Their Splitting Extrapolation Algorithm
8
作者 Yubin Pan Jin Huang Hongyan Liu 《Journal of Applied Mathematics and Physics》 2017年第2期252-258,共7页
In this paper, multidimensional weakly singular integrals are solved by using rectangular quadrature rules which base on quadrature rules of one dimensional weakly singular and multidimensional regular integrals with ... In this paper, multidimensional weakly singular integrals are solved by using rectangular quadrature rules which base on quadrature rules of one dimensional weakly singular and multidimensional regular integrals with their Euler-Maclaurin asymptotic expansions of the errors. The presented method is suit for solving multidimensional and singular integrals by comparing with Gauss quadrature rule. The error asymptotic expansions show that the convergence order of the initial quadrature rules is , where . The order of accuracy can reach to by using extrapolation and splitting extrapolation, where h0 is the maximum mesh width. Some numerical examples are constructed to show the efficiency of the method. 展开更多
关键词 MULTIDIMENSIONAL Weakly Singular INTEGRALS Euler-Maclaurin ERRORS Asymptotic EXPANSIONS splitting extrapolation
下载PDF
数值解多维问题的外推与组合技术的若干新进展
9
作者 石济民 林振宝 吕涛 《数学进展》 CSCD 北大核心 1996年第1期26-40,共15页
本文综述近年来数值解多维问题的外推与组合技术的新进展.内容包括分裂外推及其在偏微分方程、多维积分方程、多维数值积分中的应用;C.Zenger的稀疏网格法与组合求解技术;以及解边界积分方程的组合方法.本文通过算例表明这... 本文综述近年来数值解多维问题的外推与组合技术的新进展.内容包括分裂外推及其在偏微分方程、多维积分方程、多维数值积分中的应用;C.Zenger的稀疏网格法与组合求解技术;以及解边界积分方程的组合方法.本文通过算例表明这些方法是非常有效的,是解多维问题的钥匙. 展开更多
关键词 多维问题 分裂外推 组合方法 数值解 外推算法
下载PDF
解弹性力学第二类边界积分方程的求积法与分裂外推
10
作者 黄晋 朱瑞 吕涛 《计算物理》 CSCD 北大核心 2006年第6期706-712,共7页
利用Sidi奇异求积公式,提出了解曲边多角形域上线性弹性力学第二类边界积分方程的求积法,即离散矩阵的每个元素的生成只需赋值不需计算任何奇异积分.通过估计离散矩阵的特征值和利用Anselone聚紧收敛理论,证明了近似解的收敛性;同时得... 利用Sidi奇异求积公式,提出了解曲边多角形域上线性弹性力学第二类边界积分方程的求积法,即离散矩阵的每个元素的生成只需赋值不需计算任何奇异积分.通过估计离散矩阵的特征值和利用Anselone聚紧收敛理论,证明了近似解的收敛性;同时得到了误差的多参数渐近展开式;通过并行地解粗网格上的离散方程,利用分裂外推获得了高精度近似解和后验误差. 展开更多
关键词 线性弹性力学 奇异积分方程 求积法 分裂外推 后验误差 多角形域
下载PDF
稳态问题混合边界积分方程的高精度求积法与分裂外推
11
作者 黄晋 张黔川 吕涛 《计算物理》 CSCD 北大核心 2005年第6期560-564,共5页
提出了求积法解稳态问题的混合边界积分方程,它拥有高精度,低复杂度.通过并行地解粗网格上的离散方程,根据误差的多参数渐近展开,应用分裂外推算法得到高精度的近似解,同时获得后验误差估计.
关键词 稳态问题 混合边界积分方程 求积法 分裂外推
下载PDF
曲边界上一类双曲型方程的d-二次等参有限元的分裂外推法
12
作者 胡劲松 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期6-9,共4页
给出了曲边界上二阶线性双曲型方程的基于区域分解和d-二次等参有限元的分裂外推算法,得到半离散问题和全离散问题的多参数渐近展开式,并用数值算例验证了方法的有效性.
关键词 双曲型方程 分裂外推 区域分解
下载PDF
半线性椭圆方程的有限元分裂外推
13
作者 郑克龙 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第S1期431-433,共3页
针对曲边界上的二阶半线性椭圆方程,进行了区域分解和双二次等参数变换,构造出了相应的离散变分形式并利用有限元分裂外推求其数值解的数值计算方法,得到了数值解误差的四阶多参数渐近展开式.数值算例也说明了该方法计算量小、精度高的... 针对曲边界上的二阶半线性椭圆方程,进行了区域分解和双二次等参数变换,构造出了相应的离散变分形式并利用有限元分裂外推求其数值解的数值计算方法,得到了数值解误差的四阶多参数渐近展开式.数值算例也说明了该方法计算量小、精度高的特点. 展开更多
关键词 区域分解 有限元 半线性 分裂外推
下载PDF
The Collocation Method and the Splitting Extrapolation for the First Kind of Boundary Integral Equations on Polygonal Regions
14
作者 Li Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第5期603-616,共14页
In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to po... In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers h^(3)/_(i)(i=1,...,d),which means that the approximations of higher accuracy and a posteriori estimation of the errors can be obtained by splitting extrapolations.Numerical experiments are carried out to show that the methods are very efficient. 展开更多
关键词 splitting extrapolation boundary integral equation of the first kind on polygon collocation method posteriori estimation
原文传递
基于区域分解的双调和方程的混合元近似解的分裂外推(英文)
15
作者 徐迪红 孙乐林 程健 《数学杂志》 CSCD 北大核心 2001年第1期79-83,共5页
本文主要讨论了基于区域分解的双调和方程的混合元近似解的分裂外推。并得到解的多变量展开。
关键词 分裂外推 区域分解 混合元
下载PDF
A MUCLTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM 被引量:8
16
作者 ZHOU Aihui(Institute of Systems Science, Academia Sinica, Beijing 100080, China)Liem Chin-ho Shih Tsi-min(Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong)LU Tao(Institute of Chengdu Computer Application, Academia Sinica, Ch 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1997年第3期253-260,共8页
The finite element solutions of elliptic equations are shown to have a multiparameter asymptotic error expansion. Based on this expansion and a multi-parametersplitting extrapolation technique, a parallel algorithm fo... The finite element solutions of elliptic equations are shown to have a multiparameter asymptotic error expansion. Based on this expansion and a multi-parametersplitting extrapolation technique, a parallel algorithm for solving multi-dimensional equations with high order accuracy is introduced. 展开更多
关键词 Finite element MULTI-PARAMETER error EXPANSION parallel algorithm MULTIPARAMETER splitting extrapolation
原文传递
LIMITED TOMOGRAPHY RECONSTRUCTION VIA TIGHT FRAME AND SIMULTANEOUS SINOGRAM EXTRAPOLATION 被引量:1
17
作者 Jae Kyu Choi Bin Dong Xiaoqun Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2016年第6期575-589,共15页
X-ray computed tomography (CT) is one of widely used diagnostic tools for medical and dental tomographic imaging of the human body. However, the standard filtered back- projection reconstruction method requires the ... X-ray computed tomography (CT) is one of widely used diagnostic tools for medical and dental tomographic imaging of the human body. However, the standard filtered back- projection reconstruction method requires the complete knowledge of the projection data. In the case of limited data, the inverse problem of CT becomes more ill-posed, which makes the reconstructed image deteriorated by the artifacts. In this paper, we consider two dimensional CT reconstruction using the projections truncated along the spatial direc- tion in the Radon domain. Over the decades, the numerous results including the sparsity model based approach has enabled the reconstruction of the image inside the region of interest (ROI) from the limited knowledge of the data. However, unlike these existing methods, we try to reconstruct the entire CT image from the limited knowledge of the sinogram via the tight frame regularization and the simultaneous sinogram extrapolation. Our proposed model shows more promising numerical simulation results compared with the existing sparsity model based approach. 展开更多
关键词 X-ray computed tomography Limited tomography Wavelet frame Data driventight frame Bregmanized operator splitting algorithm Sinogram extrapolation.
原文传递
AN ANALYSIS OF SPLITTING EXTRAPOLATION FOR MULTIDIMENSIONAL PROBLEMS
18
作者 吕涛 石济民 林振宝 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1990年第3期261-272,共12页
The splitting extrapolation is an important technique for solving multidimensionalproblems.In the case that error u<sup>h</sup>-u has an asymptotic expansion of form Σc<sub>α</sub>h<sup&g... The splitting extrapolation is an important technique for solving multidimensionalproblems.In the case that error u<sup>h</sup>-u has an asymptotic expansion of form Σc<sub>α</sub>h<sup>2α</sup>,whereα=(α<sub>1</sub>,…,α<sub>s</sub>) and h<sup>α</sup>=h<sub>1</sub><sup>α<sub>1</sub></sup>,…h<sub>s</sub><sup>α<sub>s</sub></sup>,the method gives an approximation involving less computerstorage and less computational work in comparison with the classical Richardson extrapolation.In this paper we present a recurrence rule of the splitting extrapolation and discuss itsapplications in the fields of multiple integrals,multidimensional integral equations,partialdifferential equations and singular perturbation problems. 展开更多
关键词 splitting extrapolation asymptoticexpansion RECURRENCE ALGORITHM MULTIDIMENSIONAL PROBLEMS
原文传递
A MULTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM FOR PARABOLIC PROBLEM
19
作者 LIU Xiaoqi(Department of Mathematics,Xiangtan Teachers College,Xiangtan,China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1996年第3期270-277,共8页
AMULTI-PARAMETERSPLITTINGEXTRAPOLATIONANDAPARALLELALGORITHMFORPARABOLICPROBLEMLIUXiaoqi(DepartmentofMathemat... AMULTI-PARAMETERSPLITTINGEXTRAPOLATIONANDAPARALLELALGORITHMFORPARABOLICPROBLEMLIUXiaoqi(DepartmentofMathematics,XiangtanTeach... 展开更多
关键词 PARABOLIC equation finite element MULTI-PARAMETER error expansion PARALLEL algorithm MULTI-PARAMETER splitting extrapolation
原文传递
分裂可行性问题的外推加速线性交替方向乘子法及其全局收敛性
20
作者 刘洋 薛中会 +1 位作者 王永全 曹永胜 《计算机科学》 CSCD 北大核心 2023年第6期261-265,共5页
针对在图像重建以及语言处理系统等领域有着广泛应用的分裂可行性问题(SFP)的最优化求解,提出了外推加速线性交替方向乘子法。首先将SFP描述为一个具有线性约束的可分离凸极小化问题;然后引进外推线性交替方向乘子法,利用问题的可分离结... 针对在图像重建以及语言处理系统等领域有着广泛应用的分裂可行性问题(SFP)的最优化求解,提出了外推加速线性交替方向乘子法。首先将SFP描述为一个具有线性约束的可分离凸极小化问题;然后引进外推线性交替方向乘子法,利用问题的可分离结构,产生了具有闭式解的子问题,并在适当条件下证明了该算法的全局收敛性;最后,通过数值实验验证了该算法的可行性和有效性。 展开更多
关键词 分裂可行性问题 线性交替方向乘子法 凸极小化问题 外推加速
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部