Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be cha...Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be changed quickly without redesigning their structures. However, large numbers of long-distance wires are required to connect the programmable metasurface to provide the coded signals from field programmable gate array (FPGA) when controlling the metasurface at a long distance, which is complicated and inconvenient. Here, we propose an infrared-controlled programmable metasurface that can be programmed remotely. The infrared transceiver is able to switch the coding sequences stored in the FPGA controller, thus controlling the voltage on the varactors integrated in the metasurface. Experiment is performed at microwave frequencies, and the measured results verify that the scattering beams of the metasurface sample can be changed remotely by using infrared ray. The proposed infrared-controlled programmable metasurface opens up avenues for constructing a new class of remotely-tuning dynamic metasurfaces.展开更多
We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by ...We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.展开更多
Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of ...Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.展开更多
We study the spatial behavior of a deflected beam in a coherent A-type three-level atomic medium with an inhomogeneous control laser.When the Rabi coupling by the control laser is in a Gaussian profile,the spatialdepe...We study the spatial behavior of a deflected beam in a coherent A-type three-level atomic medium with an inhomogeneous control laser.When the Rabi coupling by the control laser is in a Gaussian profile,the spatialdependent refraction index of the atomic medium will result in a beam splitting as well as the deflection of the slow probe light under electromagnetically induced transparency.In terms of the phase difference between the two splitting beams and the position of the splitting,the possible interpretation of the splitting is given in theory.展开更多
A design approach for optical interconnect system and beam splitting composed of a phase-only diffractive optical element is described.The diffractive optical element is of 16 phase levels,so its efficiency may reach ...A design approach for optical interconnect system and beam splitting composed of a phase-only diffractive optical element is described.The diffractive optical element is of 16 phase levels,so its efficiency may reach very high.Three examples of interconnect and beam splitting patterns are carried out with this design approach and the satisfactory results are given.展开更多
基金This work was supported by the National Key Research and Development Program of China(2017YFA0700201,2017YFA0700203 and 2016YFC0800401)National Natural Science Foundation of China(61890544,61522106,61631007,61571117,61731010,61735010,61722106,61701107,and 61701108)+3 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_0081)Scientific Research Foundation of Graduate School of Southeast University(YBPY1938)Foundation of National Excellent Doctoral Dissertation of China(201444)the 111 Project(111-2-05).
文摘Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be changed quickly without redesigning their structures. However, large numbers of long-distance wires are required to connect the programmable metasurface to provide the coded signals from field programmable gate array (FPGA) when controlling the metasurface at a long distance, which is complicated and inconvenient. Here, we propose an infrared-controlled programmable metasurface that can be programmed remotely. The infrared transceiver is able to switch the coding sequences stored in the FPGA controller, thus controlling the voltage on the varactors integrated in the metasurface. Experiment is performed at microwave frequencies, and the measured results verify that the scattering beams of the metasurface sample can be changed remotely by using infrared ray. The proposed infrared-controlled programmable metasurface opens up avenues for constructing a new class of remotely-tuning dynamic metasurfaces.
基金Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2022F041)。
文摘We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.
基金Project supported by Akdeniz University Scientific Research Projects Coordination Unit
文摘Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.
基金Supported by the National Natural Science Foundation of China(11104185,10774035,10904015,10774047,10934011,and 11174084)the Innovation Program of Shanghai Municipal Education Commission(11YZ118)the Special Fund of Shanghai Outstanding Young Teachers(slgl0023).
文摘We study the spatial behavior of a deflected beam in a coherent A-type three-level atomic medium with an inhomogeneous control laser.When the Rabi coupling by the control laser is in a Gaussian profile,the spatialdependent refraction index of the atomic medium will result in a beam splitting as well as the deflection of the slow probe light under electromagnetically induced transparency.In terms of the phase difference between the two splitting beams and the position of the splitting,the possible interpretation of the splitting is given in theory.
文摘A design approach for optical interconnect system and beam splitting composed of a phase-only diffractive optical element is described.The diffractive optical element is of 16 phase levels,so its efficiency may reach very high.Three examples of interconnect and beam splitting patterns are carried out with this design approach and the satisfactory results are given.