We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determinatio...We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determination of this parameter comes from well measured rotation curves of dwarf galaxies by the LITTLE THINGS collaboration: vhrms(1)=406±69 m/s. Complementary and consistent measurements are obtained from rotation curves of spiral galaxies measured by the SPARC collaboration, density runs of giant elliptical galaxies, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, first galaxies, and reionization. Having measured vhrms(1), we then embark on a journey to the past that leads to a consistent set of measured dark matter properties, including mass, temperature and spin.展开更多
The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark ...The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark Energy Spectroscopic Instrument imaging surveys and the radio sources from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-centimeter,we identify four Late-type Galaxies with double Radio Lobes(La GRLs):J0217-3645,J0947+6220,J1412+3723 and J1736+5108.Including previously known La GRLs,we confirm the correlation between radio power P_(1.4GHz)and stellar mass M_(*)of host galaxies.Most(25/35)La GRLs belong to the blue cloud galaxies,while the newly identified cases in this work are located within the region of the red sequence.We find a clear correlation between the differential radio power,i.e.,the offset from the P_(1.4GHz)-M_(*)relation,and the galaxy color,indicating that bluer galaxies at a fixed M_(*)tend to host more powerful radio lobes.Furthermore,the majority(31/36)of La GRLs are either located in a galaxy group or displaying a disturbed morphology.We suggest that all of the galaxy mass,color and surrounding environment could play important roles in triggering radio lobes in late-type galaxies.展开更多
Collisionless dark matter can only expand adiabatically. To test this idea and constrain the properties of dark matter, we study spiral galaxies in the “Spitzer Photometry and Accurate Rotation Curves” (SPARC) sampl...Collisionless dark matter can only expand adiabatically. To test this idea and constrain the properties of dark matter, we study spiral galaxies in the “Spitzer Photometry and Accurate Rotation Curves” (SPARC) sample. Fitting the rotation curves, we obtain the root-mean-square (rms) velocity and density of dark matter in the core of the galaxies. We then calculate the rms velocity vhrms (1) that dark matter particles would have if expanded adiabatically from the core of the galaxies to the present mean density of dark matter in the universe. We obtain this “adiabatic invariant” vhrms (1) for 40 spiral galaxies. The distribution of vhrms (1) has a mean 0.87 km/s and a standard deviation of 0.27 km/s. This low relative dispersion is noteworthy given the wide range of the properties of these galaxies. The adiabatic invariant vhrms (1) may, therefore, have a cosmological origin. In this case, the rms velocity of non-relativistic dark matter particles in the early universe when density perturbations are still linear is vhrms (a)=vhrms (1)/a, where a is the expansion parameter. The adiabatic invariant obtains the ratio of dark matter temperature Th (a) to mass mh in the early universe.展开更多
To constrain the properties of dark matter, we study spiral galaxy rotation curves measured by the THINGS collaboration. A model that describes a mixture of two self-gravitating non-relativistic ideal gases, “baryons...To constrain the properties of dark matter, we study spiral galaxy rotation curves measured by the THINGS collaboration. A model that describes a mixture of two self-gravitating non-relativistic ideal gases, “baryons” and “dark matter”, reproduces the measured rotation curves within observational uncertainties. The model has four parameters that are obtained by minimizing a x2 between the measured and calculated rotation curves. From these four parameters, we calculate derived galaxy parameters. We find that dark matter satisfies the Boltzmann distribution. The onset of Fermi-Dirac or Bose-Einstein degeneracy obtains disagreement with observations and we determine, with 99% confidence, that the mass of dark matter particles is mh> 16 eV if fermions, or mh> 45 eV if bosons. We measure the root-mean-square velocity of dark matter particles in the spiral galaxies. This observable is of cosmological origin and allows us to obtain the root-mean-square velocity of dark matter particles in the early universe when perturbations were still linear. Extrapolating to the past we obtain the expansion parameter at which dark matter particles become non-relativistic: ahNR=[4.17±0.34(STAT)±2.50(SYST)]×10−6. Knowing we then obtain the dark matter particle mass mh=69.0±4.2(stat)±31.0(syst)eV, and the ratio of dark matter-to-photon temperature Th/T=0.389±0.008(stat)±0.058(syst) after e+e−annihilation while dark matter remains ultra-relativistic. We repeat these measurements with ten galaxies with masses that span three orders of magnitude, and angular momenta that span five orders of magnitude, and obtain fairly consistent results. We conclude that dark matter was once in thermal equilibrium with the (pre?) Standard Model particles (hence the observed Boltzmann distribution) and then decoupled from the Standard Model and from self-annihilation at temperatures above mμ. These results disfavor models with freeze-out or freeze-in. We also measure the primordial amplitud展开更多
This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains a...This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains an accuracy of 89.03%,surpassing the combined use of K-means or SVM with the Color-Color method in more accurately identifying galaxy morphologies.The enhanced variant,WGC_mag,integrates magnitude parameters with image features,further boosting the accuracy to 89.89%.The research also delves into the criteria for galaxy classification,discovering that WGC primarily categorizes dust-rich images as elliptical galaxies,corresponding to their lower star formation rates,and classifies less dusty images as spiral galaxies.The paper explores the consistency and complementarity of WISE infrared images with SDSS optical images in galaxy morphology classification.The SDSS Galaxy Classification Network(SGC),trained on SDSS images,achieved an accuracy of 94.64%.The accuracy reached 99.30% when predictions from SGC and WGC were consistent.Leveraging the complementarity of features in WISE and SDSS images,a novel variant of a classifier,namely the Multi-band Galaxy Morphology Integrated Classifier,has been developed.This classifier elevates the overall prediction accuracy to 95.39%.Lastly,the versatility of WGC was validated in other data sets.On the HyperLEDA data set,the distinction between elliptical galaxies and Sc,Scd and Sd spiral galaxies was most pronounced,achieving an accuracy of 90%,surpassing the classification results of the Galaxy Zoo 2 labeled WISE data set.This research not only demonstrates the effectiveness of WISE images in galaxy morphology classification but also represents an attempt to integrate multi-band astronomical data to enhance understanding of galaxy structures and evolution.展开更多
This report is about the graviton redshift theory (GRST) which hypothesises the redshift of the energy of gravitons traveling in fields. A new source of energy loss in galaxy dynamics is introduced. Due to the hypothe...This report is about the graviton redshift theory (GRST) which hypothesises the redshift of the energy of gravitons traveling in fields. A new source of energy loss in galaxy dynamics is introduced. Due to the hypothetical interactions of gravitons with the expansion of the universe, which causes an energy loss of the gravitons due to cosmological redshift, the rotation equation for galaxies, which previously had the Newtonian potential energy and the graviton gravitational redshift energy loss, is now updated with the graviton cosmological redshift energy loss. From the galaxy rotation equation, the baryonic Tully-Fisher relation (BTFR) and the modified Newtonian dynamics (MOND) are defined in radial distribution form. Fits to galaxy rotation motion are detailed. A cosmic connection for the BTFR is defined. The result is that galaxy rotation curves are fully accounted for with the GRST rotation equation and the BTFR and MOND theories are incorporated into a unified framework.展开更多
Understanding the dark matter distribution throughout a galaxy can provide insight into its elusive nature. Numerous density profiles, such as the Navarro, Frenk and White model, have been created in an attempt to stu...Understanding the dark matter distribution throughout a galaxy can provide insight into its elusive nature. Numerous density profiles, such as the Navarro, Frenk and White model, have been created in an attempt to study this distribution through analyzing orbital velocities of luminous matter and modeling dark matter distributions to explain these observations. However, we are interested in a simple model to consider the significant fluctuations in rotation curves at larger radii. Therefore, our model is much simpler compared to those previously mentioned. Our model used all the observational data available for four selected galactic rotation curves. These data present a significant variation in the orbital velocity of matter at the same distances. By running real observational data through our model, we show that the density of the dark matter within them shows real complex structure, which is not suggested by other computational models. Our aim of this paper is to model this structure and then speculate as to the cause and implications of these density fluctuations.展开更多
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th...Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field展开更多
In Part II of this study of spiral galaxy rotation curves we apply corrections and estimate all identified systematic uncertainties. We arrive at a detailed, precise, and self-consistent picture of dark matter.
We present a study of low surface brightness galaxies(LSBGs) selected by fitting the images for all the galaxies inα.40 SDSS DR7 sample with two kinds of single-component models and two kinds of two-component models(...We present a study of low surface brightness galaxies(LSBGs) selected by fitting the images for all the galaxies inα.40 SDSS DR7 sample with two kinds of single-component models and two kinds of two-component models(disk+bulge):single exponential,single sersic,exponential+deVaucular(exp+deV),and exponential+sérsic(exp+ser).Under the criteria of the B band disk central surface brightness μ_(0,disk)(B)≥22.5 mag arcsec^(-2) and the axis ratio b/a> 0.3,we selected four none-edge-on LSBG samples from each of the models which contain 1105,1038,207,and 75 galaxies,respectively.There are 756 galaxies in common between LSBGs selected by exponential and sersic models,corresponding to 68.42% of LSBGs selected by the exponential model and 72.83% of LSBGs selected by the sersic model,the rest of the discrepancy is due to the difference in obtaining μ_(0) between the exponential and sersic models.Based on the fitting,in the range of 0.5≤n≤1.5,the relation of μ_(0) from two models can be written as μ_(0,sérsic)-μ_(0,exp)=-1.34(n-1).The LSBGs selected by disk+bulge models(LSBG_(2)comps) are more massive than LSBGs selected by single-component models(LSBG_1comp),and also show a larger disk component.Though the bulges in the majority of our LSBG_(2)comps are not prominent,more than 60% of our LSBG_(2)comps will not be selected if we adopt a single-component model only.We also identified 31 giant low surface brightness galaxies(gLSBGs) from LSBG_(2)comps.They are located at the same region in the color-magnitude diagram as other gLSBGs.After we compared different criteria of gLSBGs selection,we find that for gas-rich LSBGs,M_(*)> 10^(10)M_⊙ is the best to distinguish between gLSBGs and normal LSBGs with bulge.展开更多
We present results from our Giant Metrewave Radio Telescope(GMRT)HⅠ,Himalayan Chandra Telescope(HCT)Hα,1 m Sampurnanand Telescope(ST)and 1.3 m Devasthal Fast Optical Telescope(DFOT)deep optical observations of the N...We present results from our Giant Metrewave Radio Telescope(GMRT)HⅠ,Himalayan Chandra Telescope(HCT)Hα,1 m Sampurnanand Telescope(ST)and 1.3 m Devasthal Fast Optical Telescope(DFOT)deep optical observations of the NGC 7805/6(Arp 112)system to test KUG 2359+311’s tidal dwarf galaxy(TDG)candidacy and explore the properties of the interacting system.Our GMRT HⅠmap shows no HⅠdetection associated with KUG 2359+311,nor any HⅠtail or bridge-like structure connecting KUG 2359+311 to the NGC 7805/6 system.Our HCT Hαimage,on the other hand,displays strong detections in KUG 2359+311,with net SFR0.035±0.009 M_(⊙)yr^(-1).The Hαdata constrain the redshift of KUG 2359+311 to 0.00≤z≤0.043,compared to the redshift of NGC 7806 of0.015.TDGs detected to date have all been HⅠrich,and displayed HⅠ,ionised gas and stellar tidal debris trails(bridges or tails)linking them to their parent systems.However,neither our HⅠdata nor our optical imaging,while three magnitudes deeper than SDSS,reveals a tidal trail connecting KUG 2359+311 to NGC 7805/6.Lack of HⅠ,presence of an old stellar population,ongoing star formation and reasonably high SFR compared to normal dwarf galaxies suggest that KUG 2359+311 may not be an Arp 112 TDG.It is most likely a case of a regular gas-rich dwarf galaxy undergoing a morphological transformation after having lost its entire gas content to an interaction with the Arp 112 system.Redshift and metallicity from future spectroscopic observations of KUG 2359+311 would help clarify the nature of this enigmatic structure.展开更多
We report the discovery of 64 luminous infrared galaxies, based on new observations of 20 square degrees from the LAMOST Complete Spectroscopic Survey of Pointing Area at the Southern Galactic Cap and the WISE 22 μm ...We report the discovery of 64 luminous infrared galaxies, based on new observations of 20 square degrees from the LAMOST Complete Spectroscopic Survey of Pointing Area at the Southern Galactic Cap and the WISE 22 μm catalog from the AllW ISE Data Release. Half of them are classified as late-type spirals and the others are classified as peculiar/compact galaxies. The peculiar/compact galaxies tend to exhibit higher luminosities and lower stellar masses. We also separate AGNs from HII galaxies in a simple way by examining LAMOST spectra. Those cases show that host AGNs are easily distinguished from others in the mid-infrared color-color diagrams.展开更多
Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a...Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a function of intensity of light within the central 1.5 and 3 arcsec region,is found to be a vital parameter in galaxy evolution,as it shares strong correlations with many structural and dynamical properties of early-type galaxies,including mass of the central supermassive black hole(SMBH).We use archival HST images for aperture photometry at the centre of the galaxy image to compute the CIR.We observe that the relative sizes of nuclear rings and ring cluster surface densities strongly correlate with the CIR.These correlations suggest reduced star formation in the centres of galaxies hosting small and dense nuclear rings.This scenario appears to be a consequence of strong bars as advocated by the significant connection observed between the CIR and bar strengths.In addition,we observe that the CIR is closely related with the integrated properties of the stellar population in the nuclear rings,associating the rings hosting older and less massive star clusters with low values of CIR.Thus,the CIR can serve as a crucial parameter in unfolding the coupled evolution of bars and rings as it is intimately connected with both their properties.展开更多
We investigate the radial color gradients of galactic disks using a sample of - 20 000 face-on spiral galaxies selected from the fourth data release of the Sloan Digital Sky Survey (SDSS-DR4). We combine galaxies wi...We investigate the radial color gradients of galactic disks using a sample of - 20 000 face-on spiral galaxies selected from the fourth data release of the Sloan Digital Sky Survey (SDSS-DR4). We combine galaxies with similar concentrations, sizes and luminosities to construct composite galaxies, and then measure their color profiles by stacking the azimuthally averaged radial color profiles of all the member galaxies. Except for the smallest galaxies (R50 〈 3 kpc), almost all galaxies show negative disk color gradients with mean 9 - r gradient Ggr = -0.006 magkpc-1 and r - z gradient Grz = -0.018 mag kpc^-1. The disk color gradients are independent of the morphological types of galaxies and strongly dependent on the disk surface brightness μd, with lower surface brightness galactic disks having steeper color gradients. We quantify the intrinsic correlation between color gradients and surface brightness as Ggr = -0.011μd + 0.233 and Grz - -0.015μd + 0.324. These quantified correlations provide tight observational constraints on the formation and evolution models of spiral galaxies.展开更多
Using the method proposed by Peng (1988) on the basis of density waves theory and the solution of three-dimensional Poisson s equation for a logarithmic disturbance of density,and analyzing the spiral patterns,the sca...Using the method proposed by Peng (1988) on the basis of density waves theory and the solution of three-dimensional Poisson s equation for a logarithmic disturbance of density,and analyzing the spiral patterns,the scale heights of 84 northern spiral galaxies,whose images are taken from the Digitized Sky Survey at Xinglong Observational Station of Beijing Observatory,are measured.The spiral arms of all these galaxies have been fitted on their photographs with some logarithmic spiral curves for getting their correct inclinations.展开更多
Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherica...Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherical shells and disks of higher density during gravitational contraction. The density can reach that of a solid body. The theoretical model was tested to model the formation of a spiral galaxy and Saturn. The formations of a spiral galaxy and Saturn and its disk are simulated using a novel N-body self-gravitational model. It is demonstrated that the formation of the spirals of the galaxy and disk of the planet is the result of gravitational contraction of a slowly rotated particle cloud that has a shape of slightly deformed sphere for Saturn and ellipsoid for the spiral galaxy. For Saturn, the sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate from the core of the planet.展开更多
The specific angular momenta(j_(t))of stars,baryons as a whole and dark matter halos contain clues of vital importance about how galaxies form and evolve.Using a sample of 70 spiral galaxies,we perform a preliminary a...The specific angular momenta(j_(t))of stars,baryons as a whole and dark matter halos contain clues of vital importance about how galaxies form and evolve.Using a sample of 70 spiral galaxies,we perform a preliminary analysis of j_t,and introduce a new quantity,e.g.,areal density of angular momentum(ADAM)(j_(t)M_(*)/(2R_(d))^(2))as an indication for the existence of jet(s)in spiral galaxies.The percentage of spiral galaxies having jet(s)shows a strong correlation with ADAM,although the present sample is incomplete.展开更多
New details of the action of gravitons in spiral galaxies are described. The effect of the graviton energy loss is hypothesized to be coupled to the baryon mass in the galaxy. From this relation, it follows that the b...New details of the action of gravitons in spiral galaxies are described. The effect of the graviton energy loss is hypothesized to be coupled to the baryon mass in the galaxy. From this relation, it follows that the baryonic Tully-Fisher relation is applicable to not just the final velocity of the galaxy but also to the rotational velocity at each radial position. In addition, a quadratic equation for the baryonic mass distribution is derived from the equation of motion. These results are demonstrated by making fits to galaxy rotation curves using a mass to light ratio model as well as the quadratic model for the mass distribution.展开更多
We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift id...We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift identical to the effect on light. This energy loss requires an increased rotational velocity to stabilize a galaxy. We will show that this approach successfully explains the rotational properties of spiral and dwarf galaxies.展开更多
A new model of the modified Newtonian gravity called Compacted & Collapsing Gravity (CCG) is proposed. Similar to the Milgrom’s MOND, it allows explaining the flattening of rotation curve in spiral galaxies, thus...A new model of the modified Newtonian gravity called Compacted & Collapsing Gravity (CCG) is proposed. Similar to the Milgrom’s MOND, it allows explaining the flattening of rotation curve in spiral galaxies, thus eliminates the need for dark matter at this level. However, in contrast to MOND, it puts a distinct limit on effective gravity;thereby constraints the sizes of single galaxies in connection to their masses, which complies with observations. In the bigger than single galaxies structures such as galaxy clusters, CCG rather complements than replaces interpretations of the observational data based on dark matter. Besides, the new model provides a plausible explanation to the hierarchical structure of the universe.展开更多
文摘We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determination of this parameter comes from well measured rotation curves of dwarf galaxies by the LITTLE THINGS collaboration: vhrms(1)=406±69 m/s. Complementary and consistent measurements are obtained from rotation curves of spiral galaxies measured by the SPARC collaboration, density runs of giant elliptical galaxies, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, first galaxies, and reionization. Having measured vhrms(1), we then embark on a journey to the past that leads to a consistent set of measured dark matter properties, including mass, temperature and spin.
基金partially supported by the National SKA Program of China(grant No.2022SKA0120103)the National Natural Science Foundation of China(Nos.11988101 and 11833009,12073036)+2 种基金support from the science research grants from the China Manned Space Project(CMS-CSST-2021-A01,CMS-CSST-2021-B01)the financial support from the National Key R&D Program of China(No.2021YFA1600401 and 2021YFA1600400)the International Partnership Program of Chinese Academy of Sciences,grant No.114A11KYSB20170044。
文摘The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark Energy Spectroscopic Instrument imaging surveys and the radio sources from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-centimeter,we identify four Late-type Galaxies with double Radio Lobes(La GRLs):J0217-3645,J0947+6220,J1412+3723 and J1736+5108.Including previously known La GRLs,we confirm the correlation between radio power P_(1.4GHz)and stellar mass M_(*)of host galaxies.Most(25/35)La GRLs belong to the blue cloud galaxies,while the newly identified cases in this work are located within the region of the red sequence.We find a clear correlation between the differential radio power,i.e.,the offset from the P_(1.4GHz)-M_(*)relation,and the galaxy color,indicating that bluer galaxies at a fixed M_(*)tend to host more powerful radio lobes.Furthermore,the majority(31/36)of La GRLs are either located in a galaxy group or displaying a disturbed morphology.We suggest that all of the galaxy mass,color and surrounding environment could play important roles in triggering radio lobes in late-type galaxies.
文摘Collisionless dark matter can only expand adiabatically. To test this idea and constrain the properties of dark matter, we study spiral galaxies in the “Spitzer Photometry and Accurate Rotation Curves” (SPARC) sample. Fitting the rotation curves, we obtain the root-mean-square (rms) velocity and density of dark matter in the core of the galaxies. We then calculate the rms velocity vhrms (1) that dark matter particles would have if expanded adiabatically from the core of the galaxies to the present mean density of dark matter in the universe. We obtain this “adiabatic invariant” vhrms (1) for 40 spiral galaxies. The distribution of vhrms (1) has a mean 0.87 km/s and a standard deviation of 0.27 km/s. This low relative dispersion is noteworthy given the wide range of the properties of these galaxies. The adiabatic invariant vhrms (1) may, therefore, have a cosmological origin. In this case, the rms velocity of non-relativistic dark matter particles in the early universe when density perturbations are still linear is vhrms (a)=vhrms (1)/a, where a is the expansion parameter. The adiabatic invariant obtains the ratio of dark matter temperature Th (a) to mass mh in the early universe.
文摘To constrain the properties of dark matter, we study spiral galaxy rotation curves measured by the THINGS collaboration. A model that describes a mixture of two self-gravitating non-relativistic ideal gases, “baryons” and “dark matter”, reproduces the measured rotation curves within observational uncertainties. The model has four parameters that are obtained by minimizing a x2 between the measured and calculated rotation curves. From these four parameters, we calculate derived galaxy parameters. We find that dark matter satisfies the Boltzmann distribution. The onset of Fermi-Dirac or Bose-Einstein degeneracy obtains disagreement with observations and we determine, with 99% confidence, that the mass of dark matter particles is mh> 16 eV if fermions, or mh> 45 eV if bosons. We measure the root-mean-square velocity of dark matter particles in the spiral galaxies. This observable is of cosmological origin and allows us to obtain the root-mean-square velocity of dark matter particles in the early universe when perturbations were still linear. Extrapolating to the past we obtain the expansion parameter at which dark matter particles become non-relativistic: ahNR=[4.17±0.34(STAT)±2.50(SYST)]×10−6. Knowing we then obtain the dark matter particle mass mh=69.0±4.2(stat)±31.0(syst)eV, and the ratio of dark matter-to-photon temperature Th/T=0.389±0.008(stat)±0.058(syst) after e+e−annihilation while dark matter remains ultra-relativistic. We repeat these measurements with ten galaxies with masses that span three orders of magnitude, and angular momenta that span five orders of magnitude, and obtain fairly consistent results. We conclude that dark matter was once in thermal equilibrium with the (pre?) Standard Model particles (hence the observed Boltzmann distribution) and then decoupled from the Standard Model and from self-annihilation at temperatures above mμ. These results disfavor models with freeze-out or freeze-in. We also measure the primordial amplitud
基金supported by the Joint Research Fund in AstronomyNational Natural Science Foundation of China(NSFC,grant No.U1931134)+1 种基金the Natural Science Foundation of Hebei,A2020202001the Natural Science Foundation of Tianjin Municipality,22JCYBJC00410。
文摘This study introduces a novel convolutional neural network,the WISE Galaxy Classification Network(WGC),for classifying spiral and elliptical galaxies using Wide-field Infrared Survey Explorer(WISE)images.WGC attains an accuracy of 89.03%,surpassing the combined use of K-means or SVM with the Color-Color method in more accurately identifying galaxy morphologies.The enhanced variant,WGC_mag,integrates magnitude parameters with image features,further boosting the accuracy to 89.89%.The research also delves into the criteria for galaxy classification,discovering that WGC primarily categorizes dust-rich images as elliptical galaxies,corresponding to their lower star formation rates,and classifies less dusty images as spiral galaxies.The paper explores the consistency and complementarity of WISE infrared images with SDSS optical images in galaxy morphology classification.The SDSS Galaxy Classification Network(SGC),trained on SDSS images,achieved an accuracy of 94.64%.The accuracy reached 99.30% when predictions from SGC and WGC were consistent.Leveraging the complementarity of features in WISE and SDSS images,a novel variant of a classifier,namely the Multi-band Galaxy Morphology Integrated Classifier,has been developed.This classifier elevates the overall prediction accuracy to 95.39%.Lastly,the versatility of WGC was validated in other data sets.On the HyperLEDA data set,the distinction between elliptical galaxies and Sc,Scd and Sd spiral galaxies was most pronounced,achieving an accuracy of 90%,surpassing the classification results of the Galaxy Zoo 2 labeled WISE data set.This research not only demonstrates the effectiveness of WISE images in galaxy morphology classification but also represents an attempt to integrate multi-band astronomical data to enhance understanding of galaxy structures and evolution.
文摘This report is about the graviton redshift theory (GRST) which hypothesises the redshift of the energy of gravitons traveling in fields. A new source of energy loss in galaxy dynamics is introduced. Due to the hypothetical interactions of gravitons with the expansion of the universe, which causes an energy loss of the gravitons due to cosmological redshift, the rotation equation for galaxies, which previously had the Newtonian potential energy and the graviton gravitational redshift energy loss, is now updated with the graviton cosmological redshift energy loss. From the galaxy rotation equation, the baryonic Tully-Fisher relation (BTFR) and the modified Newtonian dynamics (MOND) are defined in radial distribution form. Fits to galaxy rotation motion are detailed. A cosmic connection for the BTFR is defined. The result is that galaxy rotation curves are fully accounted for with the GRST rotation equation and the BTFR and MOND theories are incorporated into a unified framework.
文摘Understanding the dark matter distribution throughout a galaxy can provide insight into its elusive nature. Numerous density profiles, such as the Navarro, Frenk and White model, have been created in an attempt to study this distribution through analyzing orbital velocities of luminous matter and modeling dark matter distributions to explain these observations. However, we are interested in a simple model to consider the significant fluctuations in rotation curves at larger radii. Therefore, our model is much simpler compared to those previously mentioned. Our model used all the observational data available for four selected galactic rotation curves. These data present a significant variation in the orbital velocity of matter at the same distances. By running real observational data through our model, we show that the density of the dark matter within them shows real complex structure, which is not suggested by other computational models. Our aim of this paper is to model this structure and then speculate as to the cause and implications of these density fluctuations.
文摘Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field
文摘In Part II of this study of spiral galaxy rotation curves we apply corrections and estimate all identified systematic uncertainties. We arrive at a detailed, precise, and self-consistent picture of dark matter.
基金supported by the National Key R&D Program of China (grant No.2022YFA1602901)support of the National Natural Science Foundation of China(NSFC) grant Nos. 12090040, 12090041, and 12003043+5 种基金supported by the Youth Innovation Promotion AssociationCAS (No. 2020057)the science research grants of CSST from the China Manned Space Projectsupport of the NSFC grant Nos.11733006 and U1931109supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No. XDB0550100partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences。
文摘We present a study of low surface brightness galaxies(LSBGs) selected by fitting the images for all the galaxies inα.40 SDSS DR7 sample with two kinds of single-component models and two kinds of two-component models(disk+bulge):single exponential,single sersic,exponential+deVaucular(exp+deV),and exponential+sérsic(exp+ser).Under the criteria of the B band disk central surface brightness μ_(0,disk)(B)≥22.5 mag arcsec^(-2) and the axis ratio b/a> 0.3,we selected four none-edge-on LSBG samples from each of the models which contain 1105,1038,207,and 75 galaxies,respectively.There are 756 galaxies in common between LSBGs selected by exponential and sersic models,corresponding to 68.42% of LSBGs selected by the exponential model and 72.83% of LSBGs selected by the sersic model,the rest of the discrepancy is due to the difference in obtaining μ_(0) between the exponential and sersic models.Based on the fitting,in the range of 0.5≤n≤1.5,the relation of μ_(0) from two models can be written as μ_(0,sérsic)-μ_(0,exp)=-1.34(n-1).The LSBGs selected by disk+bulge models(LSBG_(2)comps) are more massive than LSBGs selected by single-component models(LSBG_1comp),and also show a larger disk component.Though the bulges in the majority of our LSBG_(2)comps are not prominent,more than 60% of our LSBG_(2)comps will not be selected if we adopt a single-component model only.We also identified 31 giant low surface brightness galaxies(gLSBGs) from LSBG_(2)comps.They are located at the same region in the color-magnitude diagram as other gLSBGs.After we compared different criteria of gLSBGs selection,we find that for gas-rich LSBGs,M_(*)> 10^(10)M_⊙ is the best to distinguish between gLSBGs and normal LSBGs with bulge.
基金support by Fundacao paraa Ciencia e a Tecnologia(FCT)through national funds(UID/FIS/04434/2013)FCT/MCTES through national funds(PIDDAC)by this grant UID/FIS/04434/2019+3 种基金by FEDER through COMPETE2020(POCI-01-0145FED ER-007672)support from DL 57/2016/CP1364/CT0009the support of NRF(Grant Nos.105925,109577,120385,and 120378)the National Natural Science Foundation of China(Grant No.11828301)。
文摘We present results from our Giant Metrewave Radio Telescope(GMRT)HⅠ,Himalayan Chandra Telescope(HCT)Hα,1 m Sampurnanand Telescope(ST)and 1.3 m Devasthal Fast Optical Telescope(DFOT)deep optical observations of the NGC 7805/6(Arp 112)system to test KUG 2359+311’s tidal dwarf galaxy(TDG)candidacy and explore the properties of the interacting system.Our GMRT HⅠmap shows no HⅠdetection associated with KUG 2359+311,nor any HⅠtail or bridge-like structure connecting KUG 2359+311 to the NGC 7805/6 system.Our HCT Hαimage,on the other hand,displays strong detections in KUG 2359+311,with net SFR0.035±0.009 M_(⊙)yr^(-1).The Hαdata constrain the redshift of KUG 2359+311 to 0.00≤z≤0.043,compared to the redshift of NGC 7806 of0.015.TDGs detected to date have all been HⅠrich,and displayed HⅠ,ionised gas and stellar tidal debris trails(bridges or tails)linking them to their parent systems.However,neither our HⅠdata nor our optical imaging,while three magnitudes deeper than SDSS,reveals a tidal trail connecting KUG 2359+311 to NGC 7805/6.Lack of HⅠ,presence of an old stellar population,ongoing star formation and reasonably high SFR compared to normal dwarf galaxies suggest that KUG 2359+311 may not be an Arp 112 TDG.It is most likely a case of a regular gas-rich dwarf galaxy undergoing a morphological transformation after having lost its entire gas content to an interaction with the Arp 112 system.Redshift and metallicity from future spectroscopic observations of KUG 2359+311 would help clarify the nature of this enigmatic structure.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173030, 11225316, 11078017, 11303038, 10833006, 10978014 and 10773014)the National Basic Research Program of China (973 program, 2014CB845705 and 2012CB821800)+1 种基金the Key Laboratory of Optical Astronomy, National Astronomical Observatories,Chinese Academy of Sciencessupported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (Grant No. XDB09000000)
文摘We report the discovery of 64 luminous infrared galaxies, based on new observations of 20 square degrees from the LAMOST Complete Spectroscopic Survey of Pointing Area at the Southern Galactic Cap and the WISE 22 μm catalog from the AllW ISE Data Release. Half of them are classified as late-type spirals and the others are classified as peculiar/compact galaxies. The peculiar/compact galaxies tend to exhibit higher luminosities and lower stellar masses. We also separate AGNs from HII galaxies in a simple way by examining LAMOST spectra. Those cases show that host AGNs are easily distinguished from others in the mid-infrared color-color diagrams.
基金the financial support from Kerala State Council for Science,Technology and Environment(KSCSTE)
文摘Using a sample of 13 early-type spiral galaxies hosting nuclear rings,we report remarkable correlations between the properties of the nuclear rings and the central intensity ratio(CIR) of their host galaxies.The CIR,a function of intensity of light within the central 1.5 and 3 arcsec region,is found to be a vital parameter in galaxy evolution,as it shares strong correlations with many structural and dynamical properties of early-type galaxies,including mass of the central supermassive black hole(SMBH).We use archival HST images for aperture photometry at the centre of the galaxy image to compute the CIR.We observe that the relative sizes of nuclear rings and ring cluster surface densities strongly correlate with the CIR.These correlations suggest reduced star formation in the centres of galaxies hosting small and dense nuclear rings.This scenario appears to be a consequence of strong bars as advocated by the significant connection observed between the CIR and bar strengths.In addition,we observe that the CIR is closely related with the integrated properties of the stellar population in the nuclear rings,associating the rings hosting older and less massive star clusters with low values of CIR.Thus,the CIR can serve as a crucial parameter in unfolding the coupled evolution of bars and rings as it is intimately connected with both their properties.
基金supported by the National Science Foundation of China(Grant Nos.10573028 and 10803016)the Key Project(Nos.10833005 and 10878003)+1 种基金the Group Innovation Project(No.10821302)the 973 program(Nos.2007CB815402 and 2007CB815403)
文摘We investigate the radial color gradients of galactic disks using a sample of - 20 000 face-on spiral galaxies selected from the fourth data release of the Sloan Digital Sky Survey (SDSS-DR4). We combine galaxies with similar concentrations, sizes and luminosities to construct composite galaxies, and then measure their color profiles by stacking the azimuthally averaged radial color profiles of all the member galaxies. Except for the smallest galaxies (R50 〈 3 kpc), almost all galaxies show negative disk color gradients with mean 9 - r gradient Ggr = -0.006 magkpc-1 and r - z gradient Grz = -0.018 mag kpc^-1. The disk color gradients are independent of the morphological types of galaxies and strongly dependent on the disk surface brightness μd, with lower surface brightness galactic disks having steeper color gradients. We quantify the intrinsic correlation between color gradients and surface brightness as Ggr = -0.011μd + 0.233 and Grz - -0.015μd + 0.324. These quantified correlations provide tight observational constraints on the formation and evolution models of spiral galaxies.
基金Project supported by the National Natural Science Foundation of China. National "Climbing Project" of China and the Doctoral Program Foundation of State Education Commission.
文摘Using the method proposed by Peng (1988) on the basis of density waves theory and the solution of three-dimensional Poisson s equation for a logarithmic disturbance of density,and analyzing the spiral patterns,the scale heights of 84 northern spiral galaxies,whose images are taken from the Digitized Sky Survey at Xinglong Observational Station of Beijing Observatory,are measured.The spiral arms of all these galaxies have been fitted on their photographs with some logarithmic spiral curves for getting their correct inclinations.
文摘Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherical shells and disks of higher density during gravitational contraction. The density can reach that of a solid body. The theoretical model was tested to model the formation of a spiral galaxy and Saturn. The formations of a spiral galaxy and Saturn and its disk are simulated using a novel N-body self-gravitational model. It is demonstrated that the formation of the spirals of the galaxy and disk of the planet is the result of gravitational contraction of a slowly rotated particle cloud that has a shape of slightly deformed sphere for Saturn and ellipsoid for the spiral galaxy. For Saturn, the sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate from the core of the planet.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.11988101 and 12073043)National Key Research and Development Program of China No.2019YFA0405500the support from CAS Project for Young Scientists in Basic Research grant No.YSBR-062。
文摘The specific angular momenta(j_(t))of stars,baryons as a whole and dark matter halos contain clues of vital importance about how galaxies form and evolve.Using a sample of 70 spiral galaxies,we perform a preliminary analysis of j_t,and introduce a new quantity,e.g.,areal density of angular momentum(ADAM)(j_(t)M_(*)/(2R_(d))^(2))as an indication for the existence of jet(s)in spiral galaxies.The percentage of spiral galaxies having jet(s)shows a strong correlation with ADAM,although the present sample is incomplete.
文摘New details of the action of gravitons in spiral galaxies are described. The effect of the graviton energy loss is hypothesized to be coupled to the baryon mass in the galaxy. From this relation, it follows that the baryonic Tully-Fisher relation is applicable to not just the final velocity of the galaxy but also to the rotational velocity at each radial position. In addition, a quadratic equation for the baryonic mass distribution is derived from the equation of motion. These results are demonstrated by making fits to galaxy rotation curves using a mass to light ratio model as well as the quadratic model for the mass distribution.
文摘We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift identical to the effect on light. This energy loss requires an increased rotational velocity to stabilize a galaxy. We will show that this approach successfully explains the rotational properties of spiral and dwarf galaxies.
文摘A new model of the modified Newtonian gravity called Compacted & Collapsing Gravity (CCG) is proposed. Similar to the Milgrom’s MOND, it allows explaining the flattening of rotation curve in spiral galaxies, thus eliminates the need for dark matter at this level. However, in contrast to MOND, it puts a distinct limit on effective gravity;thereby constraints the sizes of single galaxies in connection to their masses, which complies with observations. In the bigger than single galaxies structures such as galaxy clusters, CCG rather complements than replaces interpretations of the observational data based on dark matter. Besides, the new model provides a plausible explanation to the hierarchical structure of the universe.