In this paper, the process of thermal conventional spinning of Ti-6Al-4V alloy complex shape shell is studied by experiment. Billet for Ti-6Al-4V alloy board is headed in the spinning process for multi-pass convention...In this paper, the process of thermal conventional spinning of Ti-6Al-4V alloy complex shape shell is studied by experiment. Billet for Ti-6Al-4V alloy board is headed in the spinning process for multi-pass conventional spinning forming. With two spinning mandrel, the first is conventional spinning pre-forming and the second is conventional end forming, vacuum heat treatment after each spinning forming. As results, the mandrel preheating temperature impacts the spinning and the appropriate temperature range plays an important role in the process of spinning. With supplemental heating means and infrared thermometer measurement ensure a stable temperature. Multi-passing thermal spinning Ti-6Al-4V alloy thins the billet thickness, using the feature obtaining the wanting complex shape shell of thick bottom and thin mouth. The spinning track, the number of spinning pass, feed rate affect the billet thinning. During thermal spinning process Ti-6Al-4V alloy rebound severe. The size reduction and feed have impact on the rebound. By modifying the spinning parameters and the mandrel repair to ensure the dimensional accuracy of workpiece. Spinning workpiece has fine grain and high strength.展开更多
A series of polyamic acid copolymers(co-PAAs) containing phosphorous groups in the side chains were synthesized from [2,5-bis(4-aminophenoxy) phenyl] diphenylphosphine oxide(DATPPO) and 4,4′-oxydianiline(ODA) with 3,...A series of polyamic acid copolymers(co-PAAs) containing phosphorous groups in the side chains were synthesized from [2,5-bis(4-aminophenoxy) phenyl] diphenylphosphine oxide(DATPPO) and 4,4′-oxydianiline(ODA) with 3,3′,4,4′-biphenyltetracarboxylic dianhydride(s-BPDA) through the polycondensation in N,N′-dimethyacetamide(DMAc). The co-PAA solutions were spun into fibers by a dry-jet wet spinning process followed by thermal imidization to obtain co-polyimide(co-PI) fibers. FTIR spectra and elemental analysis confirmed the chemical structure of PI fibers. SEM results indicated that the resulting PI fibers had a smooth and dense surface, a uniform and circle-shape diameter. The thermogravimetric measurements showed that with the increase of DATPPO content, the resulting PI fibers possessed high decomposition temperature and residual char yield, indicating that the PI fibers had good thermal stability. The corresponding limiting oxygen index(LOI) values from the experiment results showed that the co-PI fibers possessed good flame-retardant property. Furthermore, the mechanical properties of the co-PI fibers were investigated systematically. When the DATPPO content increased, the tensile strength and initial modulus of the co-PI fibers decreased. However, the mechanical properties were improved by increasing the draw ratio of the fibers. When the draw ratio was up to 2.5, the tensile strength and initial modulus of the co-PI fibers reached up to 0.64 and 10.02 GPa, respectively. The WAXD results showed that the order degree of amorphous matter increased with increased stretching. In addition, the SAXS results displayed that valuably drawing the fibers could eliminate the voids inside and lead to better mechanical property. WAXD revealed that the orientation of the amorphous polymer influenced the mechanical properties of the fibers.展开更多
A series of co-polyimide(PI)fibers containing phenylphosphine oxide(PPO)group were synthesized by incorporating the bis(4-aminophenoxy)phenyl phosphine oxide(DAPOPPO)monomer into the PI molecular chain followed by dry...A series of co-polyimide(PI)fibers containing phenylphosphine oxide(PPO)group were synthesized by incorporating the bis(4-aminophenoxy)phenyl phosphine oxide(DAPOPPO)monomer into the PI molecular chain followed by dry-jet wet spinning.The effects of DAPOPPO molar content on the atomic oxygen(AO)resistance of the fibers were investigated systematically.When the AO fluence increased from 0to 3.2×1020the mass loss of the fibers showed the dependence on DAPOPPO molar content in co-PI fibers.The PI fiber containing 40%DAPOPPO showed lower mass loss compared to those containing 0%and 20%DAPOPPO.At higher AO fluence,the higher DAPOPPO content gave rise to dense carpet-like surface of fibers.XPS results indicated that the passivated phosphate layer was deposited on the fiber surface when exposed to AO,which effectively prevented fiber from AO erosion.With the DAPOPPO content increasing from 0%to 40%,the retentions of tensile strength and initial modulus for the fibers exhibited obvious growth from 44%to 68%,and 59%to 70%,after AO exposure with the fluence of 3.2×1020The excellent AO resistance benefits the fibers for application in low Earth orbit as flexible construction components.展开更多
In this paper, the 3D elastic-plastic simulation was carried out by using finite element (FE) code according to the phenomena of flange keeping straight, bending towards headstock and bending towards tailstock in th...In this paper, the 3D elastic-plastic simulation was carried out by using finite element (FE) code according to the phenomena of flange keeping straight, bending towards headstock and bending towards tailstock in the shear spinning experiments for TC4 alloy. The simulation results for the three kinds of deformations of the flange agree well with the experimental results. So it is possible to explain the reason of flange bending by analyzing the strain vectors in the flange for the three kinds of deformation, which shows that it is important to apply the FE simulation technology for predicting the defects and optimizing the spinning process of TC4 alloys.展开更多
文摘In this paper, the process of thermal conventional spinning of Ti-6Al-4V alloy complex shape shell is studied by experiment. Billet for Ti-6Al-4V alloy board is headed in the spinning process for multi-pass conventional spinning forming. With two spinning mandrel, the first is conventional spinning pre-forming and the second is conventional end forming, vacuum heat treatment after each spinning forming. As results, the mandrel preheating temperature impacts the spinning and the appropriate temperature range plays an important role in the process of spinning. With supplemental heating means and infrared thermometer measurement ensure a stable temperature. Multi-passing thermal spinning Ti-6Al-4V alloy thins the billet thickness, using the feature obtaining the wanting complex shape shell of thick bottom and thin mouth. The spinning track, the number of spinning pass, feed rate affect the billet thinning. During thermal spinning process Ti-6Al-4V alloy rebound severe. The size reduction and feed have impact on the rebound. By modifying the spinning parameters and the mandrel repair to ensure the dimensional accuracy of workpiece. Spinning workpiece has fine grain and high strength.
基金financially supported by the National Basic Research Program of China(973 Program,Key Project:2014CB643604)the National Natural Science Foundation of China(No.51373164)
文摘A series of polyamic acid copolymers(co-PAAs) containing phosphorous groups in the side chains were synthesized from [2,5-bis(4-aminophenoxy) phenyl] diphenylphosphine oxide(DATPPO) and 4,4′-oxydianiline(ODA) with 3,3′,4,4′-biphenyltetracarboxylic dianhydride(s-BPDA) through the polycondensation in N,N′-dimethyacetamide(DMAc). The co-PAA solutions were spun into fibers by a dry-jet wet spinning process followed by thermal imidization to obtain co-polyimide(co-PI) fibers. FTIR spectra and elemental analysis confirmed the chemical structure of PI fibers. SEM results indicated that the resulting PI fibers had a smooth and dense surface, a uniform and circle-shape diameter. The thermogravimetric measurements showed that with the increase of DATPPO content, the resulting PI fibers possessed high decomposition temperature and residual char yield, indicating that the PI fibers had good thermal stability. The corresponding limiting oxygen index(LOI) values from the experiment results showed that the co-PI fibers possessed good flame-retardant property. Furthermore, the mechanical properties of the co-PI fibers were investigated systematically. When the DATPPO content increased, the tensile strength and initial modulus of the co-PI fibers decreased. However, the mechanical properties were improved by increasing the draw ratio of the fibers. When the draw ratio was up to 2.5, the tensile strength and initial modulus of the co-PI fibers reached up to 0.64 and 10.02 GPa, respectively. The WAXD results showed that the order degree of amorphous matter increased with increased stretching. In addition, the SAXS results displayed that valuably drawing the fibers could eliminate the voids inside and lead to better mechanical property. WAXD revealed that the orientation of the amorphous polymer influenced the mechanical properties of the fibers.
基金financially supported by the National Basic Research Program of China (973 Program, Key Project: No. 2014CB643604)
文摘A series of co-polyimide(PI)fibers containing phenylphosphine oxide(PPO)group were synthesized by incorporating the bis(4-aminophenoxy)phenyl phosphine oxide(DAPOPPO)monomer into the PI molecular chain followed by dry-jet wet spinning.The effects of DAPOPPO molar content on the atomic oxygen(AO)resistance of the fibers were investigated systematically.When the AO fluence increased from 0to 3.2×1020the mass loss of the fibers showed the dependence on DAPOPPO molar content in co-PI fibers.The PI fiber containing 40%DAPOPPO showed lower mass loss compared to those containing 0%and 20%DAPOPPO.At higher AO fluence,the higher DAPOPPO content gave rise to dense carpet-like surface of fibers.XPS results indicated that the passivated phosphate layer was deposited on the fiber surface when exposed to AO,which effectively prevented fiber from AO erosion.With the DAPOPPO content increasing from 0%to 40%,the retentions of tensile strength and initial modulus for the fibers exhibited obvious growth from 44%to 68%,and 59%to 70%,after AO exposure with the fluence of 3.2×1020The excellent AO resistance benefits the fibers for application in low Earth orbit as flexible construction components.
文摘In this paper, the 3D elastic-plastic simulation was carried out by using finite element (FE) code according to the phenomena of flange keeping straight, bending towards headstock and bending towards tailstock in the shear spinning experiments for TC4 alloy. The simulation results for the three kinds of deformations of the flange agree well with the experimental results. So it is possible to explain the reason of flange bending by analyzing the strain vectors in the flange for the three kinds of deformation, which shows that it is important to apply the FE simulation technology for predicting the defects and optimizing the spinning process of TC4 alloys.