The idea of manipulating the interaction between ultracold fermionic alkaline-earth(like)atoms via a laser-induced periodical synthetic magnetic field was proposed in Kanász-Nagy et al(2018 Phys.Rev.B 97,155156)....The idea of manipulating the interaction between ultracold fermionic alkaline-earth(like)atoms via a laser-induced periodical synthetic magnetic field was proposed in Kanász-Nagy et al(2018 Phys.Rev.B 97,155156).In that work,it was shown that in the presence of the shaking synthetic magnetic field,two atoms in^(1)S_(0)and^(3)P_(0) states experience a periodical interaction in a rotated frame,and the effective inter-atomic interaction was approximated as the time-averaged operator of this time-dependent interaction.This technique is supposed to be efficient for ^(173) Yb atoms which have a large natural scattering length.Here we examine this time-averaging approximation and derive the rate of the two-body loss induced by the shaking of the synthetic magnetic field,by calculating the zero-energy inter-atomic scattering amplitude corresponding to the explicit periodical interaction.We find that for the typical cases with shaking angular frequencyλof the synthetic magnetic field being of the order of(2π)kHz,the time-averaging approximation is applicable only when the shaking amplitude is small enough.Moreover,the two-body loss rate increases with the shaking amplitude,and is of the order of 10^(-10)cm^(3)·s^(-1) or even larger when the time-averaging approximation is not applicable.Our results are helpful for the quantum simulations with ultracold gases of fermionic alkaline-earth(like)atoms.展开更多
<正> Two new binuclear copper(Ⅱ) complexes, [Cu(oxpn)CuL](ClO4)2, have been synthesizedand characterized, where oxpn is N,N’ bis(3-aminopropyl)oxamido and L is 1,10-phenan-throline (phen) or 5-nitro-...<正> Two new binuclear copper(Ⅱ) complexes, [Cu(oxpn)CuL](ClO4)2, have been synthesizedand characterized, where oxpn is N,N’ bis(3-aminopropyl)oxamido and L is 1,10-phenan-throline (phen) or 5-nitro-1,10-phenanthroline (NO2-phen). The crystal structure and vari-able-temperature magnetic susceptibility (4- 300 K) of the Complex (L=phen) have beendetermined. Crystal data: orthorhombic system, space group Pnma, with a = 10.433(1), b11.458(2), c = 21.999(2)A, z = 4. Every copper(Ⅱ) ion is in a square pyramidal environment.The two copper(Ⅱ) ions are linked by μ-oxamido bridge and the separation of them is 5.208A. The singlet-triplet energy gap J was found equal to -452.92cm-1, indicating that astrongantiferromagnetic spin-exchange interaction operates between the copper(Ⅱ) ions.展开更多
文摘The idea of manipulating the interaction between ultracold fermionic alkaline-earth(like)atoms via a laser-induced periodical synthetic magnetic field was proposed in Kanász-Nagy et al(2018 Phys.Rev.B 97,155156).In that work,it was shown that in the presence of the shaking synthetic magnetic field,two atoms in^(1)S_(0)and^(3)P_(0) states experience a periodical interaction in a rotated frame,and the effective inter-atomic interaction was approximated as the time-averaged operator of this time-dependent interaction.This technique is supposed to be efficient for ^(173) Yb atoms which have a large natural scattering length.Here we examine this time-averaging approximation and derive the rate of the two-body loss induced by the shaking of the synthetic magnetic field,by calculating the zero-energy inter-atomic scattering amplitude corresponding to the explicit periodical interaction.We find that for the typical cases with shaking angular frequencyλof the synthetic magnetic field being of the order of(2π)kHz,the time-averaging approximation is applicable only when the shaking amplitude is small enough.Moreover,the two-body loss rate increases with the shaking amplitude,and is of the order of 10^(-10)cm^(3)·s^(-1) or even larger when the time-averaging approximation is not applicable.Our results are helpful for the quantum simulations with ultracold gases of fermionic alkaline-earth(like)atoms.
基金Project supported by the National Natural Science Foundation of China.
文摘<正> Two new binuclear copper(Ⅱ) complexes, [Cu(oxpn)CuL](ClO4)2, have been synthesizedand characterized, where oxpn is N,N’ bis(3-aminopropyl)oxamido and L is 1,10-phenan-throline (phen) or 5-nitro-1,10-phenanthroline (NO2-phen). The crystal structure and vari-able-temperature magnetic susceptibility (4- 300 K) of the Complex (L=phen) have beendetermined. Crystal data: orthorhombic system, space group Pnma, with a = 10.433(1), b11.458(2), c = 21.999(2)A, z = 4. Every copper(Ⅱ) ion is in a square pyramidal environment.The two copper(Ⅱ) ions are linked by μ-oxamido bridge and the separation of them is 5.208A. The singlet-triplet energy gap J was found equal to -452.92cm-1, indicating that astrongantiferromagnetic spin-exchange interaction operates between the copper(Ⅱ) ions.