We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on ^(133)C_(s–)^(129)Xe/^(131)Xe. For a cell containing a mixture of ^(133)Cs at saturated pressure, we inv...We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on ^(133)C_(s–)^(129)Xe/^(131)Xe. For a cell containing a mixture of ^(133)Cs at saturated pressure, we investigate the optimal quenching gas(N_2) pressure and the corresponding pump laser intensity to achieve 30% ^(133)Cs polarization at the center of the cell when the static magnetic field B0 is 5 μT with different ^(129)Xe/^(131)Xe pressure. The effective field produced by spin-exchange polarized ^(129)Xe or ^(131)Xe sensed by ^(133)Cs can also be discussed in different^(129)Xe/^(131)Xe pressure conditions. Furthermore,the relationship between the detected signal and the probe laser frequency is researched. We obtain the optimum probe laser detuning from the D2(6~2S_(1/2)→ 6~2P_(3/2)) resonance with different ^(129)Xe/^(131)Xe pressure owing to the pressure broadening.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2014AA123401)the National Key BasResearch and Development Program of China(Grant Nos.2016YFA0302103 and 2012CB821302)+1 种基金the National Natural Science Foundation of China(Gra11134003)Shanghai Excellent Academic Leaders Program of China(Grant No.12XD1402400)
文摘We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on ^(133)C_(s–)^(129)Xe/^(131)Xe. For a cell containing a mixture of ^(133)Cs at saturated pressure, we investigate the optimal quenching gas(N_2) pressure and the corresponding pump laser intensity to achieve 30% ^(133)Cs polarization at the center of the cell when the static magnetic field B0 is 5 μT with different ^(129)Xe/^(131)Xe pressure. The effective field produced by spin-exchange polarized ^(129)Xe or ^(131)Xe sensed by ^(133)Cs can also be discussed in different^(129)Xe/^(131)Xe pressure conditions. Furthermore,the relationship between the detected signal and the probe laser frequency is researched. We obtain the optimum probe laser detuning from the D2(6~2S_(1/2)→ 6~2P_(3/2)) resonance with different ^(129)Xe/^(131)Xe pressure owing to the pressure broadening.