For realizing non-contact steering swimming of a capsule robot in curved environment filled with viscous liquid, based on spa- tial orthogonal superposition theorem of alternating magnetic vectors, an innovative physi...For realizing non-contact steering swimming of a capsule robot in curved environment filled with viscous liquid, based on spa- tial orthogonal superposition theorem of alternating magnetic vectors, an innovative physical method is proposed, which em- ploys three-axis orthogonal square Helmholtz coils fed with three phase sine currents to create a universal uniform magnetic spin vector as energy source. According to the antiphase sine current superposition theorem generalized in this paper, an effec- tive control method for successively adjusting the orientation and the rotating direction of the universal magnetic spin vector is proposed. For validating its feasibility and controllability, three-axis Helmholtz coils, power source and an innovative capsule robot prototype were manufactured, experiments were conducted in both spiral pipe and animal intestine. It was demonstrated that the orientation and the rotational direction of the universal uniform-magnetic spin vector can be adjusted successively through digital control and steering swimming of the capsule robot in spiral intestine can be achieved successfully. The breakthrough of the universal rotating uniform-magnetic vector will push forward the development of modern physics and biomedical engineering展开更多
For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development...For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.展开更多
Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic C...Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.展开更多
Searching for novel ferromagnetic oxides with high Curie temperature(TC)has been one of the main goals for oxide spintronics.The well-known perovskite cobaltate LaCoO_(3) is a classical ferromagnet in its thin-film fo...Searching for novel ferromagnetic oxides with high Curie temperature(TC)has been one of the main goals for oxide spintronics.The well-known perovskite cobaltate LaCoO_(3) is a classical ferromagnet in its thin-film form;however,it suffers from a low TC(~85 K).Here we report a new type of ferromagnetic La-Co-O films with an ultrahigh TC of~820 K.They are fabricated by pulsed laser deposition from a LaCoO_(3) target at low oxygen partial pressures.Detailed structural analysis indicates that they crystallize in terms of the Ruddlesden–Popper phase of La_(2)CoO_(4±x).In sharp contrast to the antiferromagnetism of bulk La_(2)CoO_(4),the strong ferromagnetism in the La_(2)CoO_(4±x) thin films is firmly demonstrated by magnetometry measurements,X-ray magnetic circular dichroism characterization,and magnetotransport experiments.More importantly,density functional theory calculations indicate that the nonstoichiometric oxygen induces an antiferromagnetic-to-ferromagnetic phase transition,accompanied by the orbital reconstruction of Co 3d electrons.Thus,our study provides an attractive strategy for designing or synthesizing exotic magnetic oxides with high ordering temperatures.展开更多
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the...Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.展开更多
相比于电荷流的高功耗,自旋流可以高效地传输能量与信息的同时避免焦耳热的产生,因此基于自旋流的电子器件成为未来电子信息器件研发的重要方向之一.自旋流及其输运现象的相关研究是自旋电子学器件的开发基础.本文着眼于铁磁金属镍(Ni)...相比于电荷流的高功耗,自旋流可以高效地传输能量与信息的同时避免焦耳热的产生,因此基于自旋流的电子器件成为未来电子信息器件研发的重要方向之一.自旋流及其输运现象的相关研究是自旋电子学器件的开发基础.本文着眼于铁磁金属镍(Ni)与非磁重金属(Pt)构建的异质结结构,研究了异质结界面的自旋输运特性,发现其对扩散自旋流的全阻塞效应.本工作以基于钇铁石榴石(yttrium iron garnet,YIG)的YIG/Ni/Pt三层器件开展,采用自旋泵浦技术激发扩散自旋流注入到镍中,同时检测与分析器件中的逆自旋霍尔电压,并与YIG/Ni双层器件中的信号进行对比分析.结果证明YIG/Ni/Pt三层器件中的铂金属层仅起分流作用而对逆自旋霍尔电流无贡献,即镍层中的扩散自旋流被阻塞于Ni/Pt异质结界面.本工作加深了对界面处自旋流输运的认识,铁磁性金属/非磁重金属自旋流阻塞界面的发现也为自旋电子器件的设计及新功能开发提供了新的思路与手段.展开更多
Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of t...Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on.展开更多
We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivitie...We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero,while the photoconductivities of non-resonant shift current contribution are zero.We find that the RSOC induces a warping term,which leads to the nonzero rectified currents.Moreover,the photoconductivities of resonant injection(shift)current contribution are(not)related to the relaxation rate.The similar behavior can be found in other Dirac materials,and our findings provide a way to tune the nonlinear transport properties of Dirac materials.展开更多
Photogalvanic effect(PGE)occurs in materials with non-centrosymmetric structures when irradiated by linearly or circularly polarized light.Here,using non-equilibrium Green’s function combined with density functional ...Photogalvanic effect(PGE)occurs in materials with non-centrosymmetric structures when irradiated by linearly or circularly polarized light.Here,using non-equilibrium Green’s function combined with density functional theory(NEGF-DFT),we investigated the linear photogalvanic effect(LPGE)in monolayers of group-V elements(As,Sb,and Bi)by first-principles calculations.First,by designing a two-probe structure based on the group-V elements,we found a giant anisotropy photoresponse of As between the armchair and zigzag directions.Then,we analyzed Sb and Bi’s charge and spin photocurrent characteristics when considering the spin-orbit coupling(SOC)effect.It is found that when the polarization direction of linearly polarized light is parallel or perpendicular to the transport direction(θ=0°or 90°),the spin up and spin down photoresponse in the armchair direction has the same magnitude and direction,leading to the generation of net charge current.However,in the zigzag direction,the spin up and spin down photoresponse have the same magnitude with opposite directions,leading to the generation of pure spin current.Furthermore,it is understood by analyzing the bulk spin photovoltaic(BSPV)coefficient from the symmetry point of view.Finally,we found that the net charge current generated in the armchair direction and the pure spin current generated in the zigzag direction can be further tuned with the increase of the material’s buckling height.Our results highlight that these group-V monolayers are promising candidates for novel functional materials,which will provide a broad prospect for the realization of ultrathin ferroelectric devices in optoelectronics due to their spontaneous polarization characteristics and high Curie temperature.展开更多
The spin current in a parabolically confined semiconductor hcterojunction quantum wire with Drcsselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for li...The spin current in a parabolically confined semiconductor hcterojunction quantum wire with Drcsselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for linear and angular spin current densities are derived by using the recent definition for spin current based on spin continuity equation. It is found that the spin current in this Dresselhaus spin-orbit coupling quantum wire is antisymmetrical, which is different from that in Rashba model due to the difference in symmetry between these two models. Some numerical examples for the result are also demonstrated and discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60875064,61175102,and 51277018)
文摘For realizing non-contact steering swimming of a capsule robot in curved environment filled with viscous liquid, based on spa- tial orthogonal superposition theorem of alternating magnetic vectors, an innovative physical method is proposed, which em- ploys three-axis orthogonal square Helmholtz coils fed with three phase sine currents to create a universal uniform magnetic spin vector as energy source. According to the antiphase sine current superposition theorem generalized in this paper, an effec- tive control method for successively adjusting the orientation and the rotating direction of the universal magnetic spin vector is proposed. For validating its feasibility and controllability, three-axis Helmholtz coils, power source and an innovative capsule robot prototype were manufactured, experiments were conducted in both spiral pipe and animal intestine. It was demonstrated that the orientation and the rotational direction of the universal uniform-magnetic spin vector can be adjusted successively through digital control and steering swimming of the capsule robot in spiral intestine can be achieved successfully. The breakthrough of the universal rotating uniform-magnetic vector will push forward the development of modern physics and biomedical engineering
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718701)the China Postdoctoral Science Foundation(Grant No.2022M722888)the National Natural Science Foundation of China(Grant Nos.12174347 and 12004340).
文摘For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.
基金financially supported by the National Natural Science Foundation of China(Nos.52002294 and 52202111)the Key Research and Development Program of Hubei Province(No.2021BAA208)+3 种基金the Knowledge Innovation Program of Wuhan-Shuguang Project(No.2022010801020364)City University of Hong Kong Donation Research Grant(No.DON-RMG 9229021)City University of Hong Kong Donation Grant(No.9220061)City University of Hong Kong Strategic Research Grant(SRG)(No.7005505)。
文摘Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.
基金Z.Q.L.acknowledges the financial support of the National Key Research and Development Program of China(Nos.2022YFB3506000 and 2022YFA1602701)the National Natural Science Foundation of China(Nos.52271235 and 52121001)Beijing Natural Science Foundation(No.JQ23005).P.X.Q.acknowledges the financial support of the China National Postdoctoral Program for Innovative Talents(No.BX20230451).
文摘Searching for novel ferromagnetic oxides with high Curie temperature(TC)has been one of the main goals for oxide spintronics.The well-known perovskite cobaltate LaCoO_(3) is a classical ferromagnet in its thin-film form;however,it suffers from a low TC(~85 K).Here we report a new type of ferromagnetic La-Co-O films with an ultrahigh TC of~820 K.They are fabricated by pulsed laser deposition from a LaCoO_(3) target at low oxygen partial pressures.Detailed structural analysis indicates that they crystallize in terms of the Ruddlesden–Popper phase of La_(2)CoO_(4±x).In sharp contrast to the antiferromagnetism of bulk La_(2)CoO_(4),the strong ferromagnetism in the La_(2)CoO_(4±x) thin films is firmly demonstrated by magnetometry measurements,X-ray magnetic circular dichroism characterization,and magnetotransport experiments.More importantly,density functional theory calculations indicate that the nonstoichiometric oxygen induces an antiferromagnetic-to-ferromagnetic phase transition,accompanied by the orbital reconstruction of Co 3d electrons.Thus,our study provides an attractive strategy for designing or synthesizing exotic magnetic oxides with high ordering temperatures.
文摘Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.
文摘相比于电荷流的高功耗,自旋流可以高效地传输能量与信息的同时避免焦耳热的产生,因此基于自旋流的电子器件成为未来电子信息器件研发的重要方向之一.自旋流及其输运现象的相关研究是自旋电子学器件的开发基础.本文着眼于铁磁金属镍(Ni)与非磁重金属(Pt)构建的异质结结构,研究了异质结界面的自旋输运特性,发现其对扩散自旋流的全阻塞效应.本工作以基于钇铁石榴石(yttrium iron garnet,YIG)的YIG/Ni/Pt三层器件开展,采用自旋泵浦技术激发扩散自旋流注入到镍中,同时检测与分析器件中的逆自旋霍尔电压,并与YIG/Ni双层器件中的信号进行对比分析.结果证明YIG/Ni/Pt三层器件中的铂金属层仅起分流作用而对逆自旋霍尔电流无贡献,即镍层中的扩散自旋流被阻塞于Ni/Pt异质结界面.本工作加深了对界面处自旋流输运的认识,铁磁性金属/非磁重金属自旋流阻塞界面的发现也为自旋电子器件的设计及新功能开发提供了新的思路与手段.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB921502 and 2013CB922303)the National Natural Science Foundation of China(Grant Nos.11474184,116627805,and 11504203)+2 种基金the 111 Project(Grant No.B13029)Zhang Yin and Wang Xiangrong were supported by the Hong Kong RGC Grants(Grant Nos.16301816 and 605413)Wu Yong and Jiang Yong were supported by the National Natural Science Foundation of China(Grant No.51501007)
文摘Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on.
基金Project supported by the Shandong Province Natural Science Foundation(Grant No.ZR2021MF077)。
文摘We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero,while the photoconductivities of non-resonant shift current contribution are zero.We find that the RSOC induces a warping term,which leads to the nonzero rectified currents.Moreover,the photoconductivities of resonant injection(shift)current contribution are(not)related to the relaxation rate.The similar behavior can be found in other Dirac materials,and our findings provide a way to tune the nonlinear transport properties of Dirac materials.
基金support from the National Key R&D Program of China under Grant No.2022YFA1404003the National Natural Science Foundation of China (Grant Nos.12074230 and 12174231)+2 种基金the Natural Science Foundation of Shanxi Normal Universitythe Fund for Shanxi“1331 Project”Shanxi Province 100-Plan Talent Program,Fundamental Research Program of Shanxi Province through 202103021222001 and 202203021212397.
文摘Photogalvanic effect(PGE)occurs in materials with non-centrosymmetric structures when irradiated by linearly or circularly polarized light.Here,using non-equilibrium Green’s function combined with density functional theory(NEGF-DFT),we investigated the linear photogalvanic effect(LPGE)in monolayers of group-V elements(As,Sb,and Bi)by first-principles calculations.First,by designing a two-probe structure based on the group-V elements,we found a giant anisotropy photoresponse of As between the armchair and zigzag directions.Then,we analyzed Sb and Bi’s charge and spin photocurrent characteristics when considering the spin-orbit coupling(SOC)effect.It is found that when the polarization direction of linearly polarized light is parallel or perpendicular to the transport direction(θ=0°or 90°),the spin up and spin down photoresponse in the armchair direction has the same magnitude and direction,leading to the generation of net charge current.However,in the zigzag direction,the spin up and spin down photoresponse have the same magnitude with opposite directions,leading to the generation of pure spin current.Furthermore,it is understood by analyzing the bulk spin photovoltaic(BSPV)coefficient from the symmetry point of view.Finally,we found that the net charge current generated in the armchair direction and the pure spin current generated in the zigzag direction can be further tuned with the increase of the material’s buckling height.Our results highlight that these group-V monolayers are promising candidates for novel functional materials,which will provide a broad prospect for the realization of ultrathin ferroelectric devices in optoelectronics due to their spontaneous polarization characteristics and high Curie temperature.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574042) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No 04A031).
文摘The spin current in a parabolically confined semiconductor hcterojunction quantum wire with Drcsselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for linear and angular spin current densities are derived by using the recent definition for spin current based on spin continuity equation. It is found that the spin current in this Dresselhaus spin-orbit coupling quantum wire is antisymmetrical, which is different from that in Rashba model due to the difference in symmetry between these two models. Some numerical examples for the result are also demonstrated and discussed.