A comparison of sphericity and Zingg factor for particle morphology and description of fluidized-bed dynamics are presented. It is found that Zingg factor Fz = LH/B2 (where L, H and B are, respectively, the length, b...A comparison of sphericity and Zingg factor for particle morphology and description of fluidized-bed dynamics are presented. It is found that Zingg factor Fz = LH/B2 (where L, H and B are, respectively, the length, breadth and height of a particle) well describes the effect of particle morphology. Experimental results show that non-spherical particles give poor fluidizing quality as compared to spherical particles in terms of pressure drop, Umf, etc. With the same volume-equivalent diameter, non-spherical particles have lower Umf and fluidizing coefficient 8. Some smooth curves have been obtained between the parameters 8, Umf and Fz. The quality of fluidization could be evaluated by fluidizing coefficient, which has been correlated to the Zingg factor and minimum fluidizing velocity in this paper.展开更多
基金The authors acknowledge with gratitude the financial support from the National Natural Science Foundation of China (Contract no. 50476082).
文摘A comparison of sphericity and Zingg factor for particle morphology and description of fluidized-bed dynamics are presented. It is found that Zingg factor Fz = LH/B2 (where L, H and B are, respectively, the length, breadth and height of a particle) well describes the effect of particle morphology. Experimental results show that non-spherical particles give poor fluidizing quality as compared to spherical particles in terms of pressure drop, Umf, etc. With the same volume-equivalent diameter, non-spherical particles have lower Umf and fluidizing coefficient 8. Some smooth curves have been obtained between the parameters 8, Umf and Fz. The quality of fluidization could be evaluated by fluidizing coefficient, which has been correlated to the Zingg factor and minimum fluidizing velocity in this paper.