图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖...图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖分.然后,对Delaunay三角边抽样、聚类、量化并构建索引.通过票决算法,将点对匹配与否映射到矩阵中以解决距离度量没有利用数据集本身所蕴含的任何结构信息和搜索效率相对较低的问题.结合SURF算法和Delaunay三角网提出一种特征匹配的新方法,在标准图像集上的实验验证,在耗时基本相同的情况下,提取的特征点较多且正确匹配率较高.展开更多
Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration whe...Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.展开更多
针对云台网络摄像机监控系统,提出一种基于摄像机视频流的全景图生成算法,以构建更大的监控场景。根据帧间重叠区域的大小选取关键帧,进行柱面投影,利用计算性能优越的SURF(Speeded Up Robust Features,加速鲁棒性特征)算法对所选取的...针对云台网络摄像机监控系统,提出一种基于摄像机视频流的全景图生成算法,以构建更大的监控场景。根据帧间重叠区域的大小选取关键帧,进行柱面投影,利用计算性能优越的SURF(Speeded Up Robust Features,加速鲁棒性特征)算法对所选取的关键帧进行特征点提取,使用基于哈希映射的特征点匹配算法加快特征点的匹配,并结合RANSAC(RANdom SAmple Consensus,随机抽样一致)算法剔除误匹配,估计关键帧之间的变换关系。实验结果表明,该方法能较好实现视频序列的快速拼接,鲁棒性强,具有较高的实用价值。展开更多
针对目前大多数水印算法功能较单一,提出了一种可以同时进行版权保护和内容认证的多功能彩色图像双水印算法。首先,将原始图像由RGB空间转换到YUV空间,提取亮度分量的SURF(speeded up robust feature)特征点,根据特征点的主方向构造描...针对目前大多数水印算法功能较单一,提出了一种可以同时进行版权保护和内容认证的多功能彩色图像双水印算法。首先,将原始图像由RGB空间转换到YUV空间,提取亮度分量的SURF(speeded up robust feature)特征点,根据特征点的主方向构造描述向量并将其拆分为两个子向量,分别计算它们与一个参考向量之间的余弦夹角,通过比较夹角的大小关系来构造鲁棒零水印序列;然后对原始图像进行2×2分块,对子图像块奇异值范数进行异或运算来产生脆弱水印信息,并将其嵌入至图像空域的最低有效位。版权归属鉴定时通过计算原始鲁棒零水印序列和从待检测图像中提取的水印序列之间的BCR(bit correct rates)相关系数作为鉴定的依据,内容认证时通过比较图像最低有效位和脆弱水印信息是否一致来实现篡改的检测和定位。实验结果表明,本文算法具有良好的透明性和较高的计算效率,同时具备版权保护和内容认证的双重功能。展开更多
SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过...SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过程中加入了渐变的信息。实验结果表明,提出的G-SURF(Gradual-SURF)算子可以获得更稳定的效果,并且同时计算复杂度也有所改善。展开更多
文摘图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖分.然后,对Delaunay三角边抽样、聚类、量化并构建索引.通过票决算法,将点对匹配与否映射到矩阵中以解决距离度量没有利用数据集本身所蕴含的任何结构信息和搜索效率相对较低的问题.结合SURF算法和Delaunay三角网提出一种特征匹配的新方法,在标准图像集上的实验验证,在耗时基本相同的情况下,提取的特征点较多且正确匹配率较高.
基金supported by the National Natural Science Foundation of China (60802043)the National Basic Research Program of China(973 Program) (2010CB327900)
文摘Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.
文摘SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过程中加入了渐变的信息。实验结果表明,提出的G-SURF(Gradual-SURF)算子可以获得更稳定的效果,并且同时计算复杂度也有所改善。