为分析高速永磁同步电动机定子各区域的铁耗分布情况,以一台额定功率为250 k W、额定转速为67 002 r/min的高速永磁同步电机为例,建立高速永磁同步电机的二维有限元计算模型,对定子区域进行划分,研究一个周期内各个区域径向磁密和切向...为分析高速永磁同步电动机定子各区域的铁耗分布情况,以一台额定功率为250 k W、额定转速为67 002 r/min的高速永磁同步电机为例,建立高速永磁同步电机的二维有限元计算模型,对定子区域进行划分,研究一个周期内各个区域径向磁密和切向磁密的变化规律,采用不同的铁耗计算模型计算出定子铁心各区域铁耗的分布特性,将定子铁耗计算结果与有限元计算结果相比较,并进一步分析高速永磁同步电机的铁耗密度分布特点。计算结果表明,高速永磁同步电机稳定运行在较高的频率时,定子铁心中的涡流损耗占总铁心损耗的比重最大,附加损耗占比最小。当考虑旋转磁场和谐波分量的影响时,定子铁心损耗的大小明显高于仅考虑交变磁场影响时的损耗,更接近有限元计算结果。虽然定子齿顶的铁耗最小,但该区域的损耗密度最大,此外,定子铁心的各个区域还存在大量的谐波铁耗。此研究可为后续高速永磁同步电机设计提供一定参考。展开更多
In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,...In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,including bearings selection,rotor dynamics analysis and design,rotor stress analysis and protection,thermal analysis and design,electromagnetic losses analysis and reduction,sensorless control strategies,as well as comparison and selection of sine-wave and square-wave drive modes.Some challenges are also discussed,so that future studies could be focused.展开更多
High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model c...High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.展开更多
文摘为分析高速永磁同步电动机定子各区域的铁耗分布情况,以一台额定功率为250 k W、额定转速为67 002 r/min的高速永磁同步电机为例,建立高速永磁同步电机的二维有限元计算模型,对定子区域进行划分,研究一个周期内各个区域径向磁密和切向磁密的变化规律,采用不同的铁耗计算模型计算出定子铁心各区域铁耗的分布特性,将定子铁耗计算结果与有限元计算结果相比较,并进一步分析高速永磁同步电机的铁耗密度分布特点。计算结果表明,高速永磁同步电机稳定运行在较高的频率时,定子铁心中的涡流损耗占总铁心损耗的比重最大,附加损耗占比最小。当考虑旋转磁场和谐波分量的影响时,定子铁心损耗的大小明显高于仅考虑交变磁场影响时的损耗,更接近有限元计算结果。虽然定子齿顶的铁耗最小,但该区域的损耗密度最大,此外,定子铁心的各个区域还存在大量的谐波铁耗。此研究可为后续高速永磁同步电机设计提供一定参考。
基金The authors'team acknowledges the continuous and invaluable support from the Natural Science Foundation of China under the grants of 51577165,51690182,51377140,and 51077116.
文摘In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,including bearings selection,rotor dynamics analysis and design,rotor stress analysis and protection,thermal analysis and design,electromagnetic losses analysis and reduction,sensorless control strategies,as well as comparison and selection of sine-wave and square-wave drive modes.Some challenges are also discussed,so that future studies could be focused.
基金supported by the National Natural Science Foundation of China (Grant No. 50875234)the National Science and Technology Support Program of China (Grant No. 2006BAF01B09-7)
文摘High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.