We present in this paper a unified framework for analyzing the spectral methods in unbounded domains using mapped Jacobi,Laguerre and Hermite functions.A detailed comparison of the convergence rates of these spectral ...We present in this paper a unified framework for analyzing the spectral methods in unbounded domains using mapped Jacobi,Laguerre and Hermite functions.A detailed comparison of the convergence rates of these spectral methods for solutions with typical decay behaviors is carried out,both theoretically and computationally.A brief review on some of the recent advances in the spectral methods for unbounded domains is also presented.展开更多
We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral fu...We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral functions σ(·), σl(·), σr(·),σl(·) ∩ σr(·), δσ(·), ησ(·), σap(·), σs(·), and σap(·) ∩ σs(·).展开更多
This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating ...This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating the fractional derivatives of shifted Chebyshev polynomials of the second kind in terms of their original polynomials is established.This formula is expressed in terms of a certain terminating hypergeometric function of the type_(4)F_(3)(1).This hypergeometric function is reduced in case of the integer case into a certain terminating hypergeometric function of the type 3 F 2(1)which can be summed with the aid of Watson’s identity.Six illustrative examples are presented to ensure the applicability and accuracy of the proposed algorithm.展开更多
In this paper, it is proposed to apply the Dempster-Shafer Theory (DST) or the theory of evidence to map vegetation, aquatic and mineral surfaces with a view to detecting potential areas of observation of outcrops of ...In this paper, it is proposed to apply the Dempster-Shafer Theory (DST) or the theory of evidence to map vegetation, aquatic and mineral surfaces with a view to detecting potential areas of observation of outcrops of geological formations (rocks, breastplates, regolith, etc.). The proposed approach consists in aggregating information by using the DST. From pretreated Aster satellite images (geo-referencing, geometric correction and resampling at 15 m), new channels were produced by determining the spectral indices NDVI, MNDWI and NDBaI. Then, the DST formalism was modeled and generated under the MATLAB software, an image segmented into six classes including three absolute classes (E,V,M) and three classes of confusion ({E,V}, {M,V}, {E,M}). The control on the land, based on geographic coordinates of pixels of different classes on said image, has made it possible to make a concordant interpretation thereof. Our contribution lies in taking into account imperfections (inaccuracies and uncertainties) related to source information by using mass functions based on a simple support model (two focal elements: the discernment framework and the potential set of belonging of the pixel to be classified) with a normal law for the good management of these.展开更多
In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also...In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.展开更多
In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev...In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev polynomials as basis functions.The idea is to discretize the equations by means of differentiation matrices and to relate them to Sylvester-type equations by means of a fourth-order implicit-explicit scheme,being of particular interest the treatment of three-dimensional Sylvester equations that we make.The resulting method is easy to understand and express,and can be implemented in a transparent way by means of a few lines of code.We test numerically the three choices of basis functions,showing the convenience of this new approach,especially when rational Chebyshev polynomials are considered.展开更多
In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. W...In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. We treat all the Matsbara frequencies, including Fermionic and Bosonic frequencies, on an equal footing. It is pointed out that when complex eigenvalues appear, the dissipation of a system cannot simply be ascribed to the pure imaginary part of the Green function. Therefore, the use of the name fluctuation-dissipation theorem should be careful.展开更多
In cryptology, it is an important topic to study the best affine approach of functions. The best affine approach of Boolean functions has been discussed in ref. [1] by using the Walsh spectrum, of which the key proble...In cryptology, it is an important topic to study the best affine approach of functions. The best affine approach of Boolean functions has been discussed in ref. [1] by using the Walsh spectrum, of which the key problem is how to represent the correspondence of Boolean functions by using Walsh spectrum. For the multi-valued logical functions so far, the spectral representation of their correspondence has not been presented yet. This let-展开更多
In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the appro...In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space-velocity domain with a BDF timestepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.展开更多
Diagonalized Chebyshev rational spectral methods for solving second-order elliptic problems on the half/whole line are proposed.Some Sobolev bi-orthogonal rational basis functions are constructed which lead to the dia...Diagonalized Chebyshev rational spectral methods for solving second-order elliptic problems on the half/whole line are proposed.Some Sobolev bi-orthogonal rational basis functions are constructed which lead to the diagonalization of discrete systems.Accordingly,both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like Chebyshev rational series.Numerical results demonstrate the effectiveness of the suggested approaches.展开更多
Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet ...Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.展开更多
This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid.The layer densities are approximated b...This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid.The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid.With the proposed technique,the computation cost of collocation matrix entries is reduced from O(M2N4)to O(MN4),where N2 is the number of spherical harmonics(i.e.,size of the matrix)and M is the number of one-dimensional integration quadrature points.Numerical results demonstrate the spectral accuracy of the method.展开更多
基金The work of J.S.is partially supported by the NFS grant DMS-0610646The work of L.W.is partially supported by a Start-Up grant from NTU and by Singapore MOE Grant T207B2202Singapore grant NRF 2007IDM-IDM002-010.
文摘We present in this paper a unified framework for analyzing the spectral methods in unbounded domains using mapped Jacobi,Laguerre and Hermite functions.A detailed comparison of the convergence rates of these spectral methods for solutions with typical decay behaviors is carried out,both theoretically and computationally.A brief review on some of the recent advances in the spectral methods for unbounded domains is also presented.
基金Natural Science Foundation of ChinaGrant for Returned Scholars of Shanxi
文摘We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral functions σ(·), σl(·), σr(·),σl(·) ∩ σr(·), δσ(·), ησ(·), σap(·), σs(·), and σap(·) ∩ σs(·).
文摘This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method.A new explicit formula for approximating the fractional derivatives of shifted Chebyshev polynomials of the second kind in terms of their original polynomials is established.This formula is expressed in terms of a certain terminating hypergeometric function of the type_(4)F_(3)(1).This hypergeometric function is reduced in case of the integer case into a certain terminating hypergeometric function of the type 3 F 2(1)which can be summed with the aid of Watson’s identity.Six illustrative examples are presented to ensure the applicability and accuracy of the proposed algorithm.
文摘In this paper, it is proposed to apply the Dempster-Shafer Theory (DST) or the theory of evidence to map vegetation, aquatic and mineral surfaces with a view to detecting potential areas of observation of outcrops of geological formations (rocks, breastplates, regolith, etc.). The proposed approach consists in aggregating information by using the DST. From pretreated Aster satellite images (geo-referencing, geometric correction and resampling at 15 m), new channels were produced by determining the spectral indices NDVI, MNDWI and NDBaI. Then, the DST formalism was modeled and generated under the MATLAB software, an image segmented into six classes including three absolute classes (E,V,M) and three classes of confusion ({E,V}, {M,V}, {E,M}). The control on the land, based on geographic coordinates of pixels of different classes on said image, has made it possible to make a concordant interpretation thereof. Our contribution lies in taking into account imperfections (inaccuracies and uncertainties) related to source information by using mass functions based on a simple support model (two focal elements: the discernment framework and the potential set of belonging of the pixel to be classified) with a normal law for the good management of these.
基金supported by Spanish Government Grant(Grant No. MTM2016-79436-P)supported by Nazarbayev University Social Policy Grant
文摘In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.
文摘In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev polynomials as basis functions.The idea is to discretize the equations by means of differentiation matrices and to relate them to Sylvester-type equations by means of a fourth-order implicit-explicit scheme,being of particular interest the treatment of three-dimensional Sylvester equations that we make.The resulting method is easy to understand and express,and can be implemented in a transparent way by means of a few lines of code.We test numerically the three choices of basis functions,showing the convenience of this new approach,especially when rational Chebyshev polynomials are considered.
文摘In this paper, an extended spectral theorem is given, which enables one to calculate the correlation functions when complex eigenvalues appear. To do so, a Fourier transformation with a complex argument is utilized. We treat all the Matsbara frequencies, including Fermionic and Bosonic frequencies, on an equal footing. It is pointed out that when complex eigenvalues appear, the dissipation of a system cannot simply be ascribed to the pure imaginary part of the Green function. Therefore, the use of the name fluctuation-dissipation theorem should be careful.
文摘In cryptology, it is an important topic to study the best affine approach of functions. The best affine approach of Boolean functions has been discussed in ref. [1] by using the Walsh spectrum, of which the key problem is how to represent the correspondence of Boolean functions by using Walsh spectrum. For the multi-valued logical functions so far, the spectral representation of their correspondence has not been presented yet. This let-
文摘In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space-velocity domain with a BDF timestepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.
基金This work was supported in part by National Natural Science Foun-dation of China(Nos.11571238 and 11601332).
文摘Diagonalized Chebyshev rational spectral methods for solving second-order elliptic problems on the half/whole line are proposed.Some Sobolev bi-orthogonal rational basis functions are constructed which lead to the diagonalization of discrete systems.Accordingly,both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like Chebyshev rational series.Numerical results demonstrate the effectiveness of the suggested approaches.
基金the National Natural Science Foundation of China (Nos.11571238,11601332,91130014,11471312 and 91430216).
文摘Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.
基金Financial support for this work was provided by the National Institutes of Health(grant number:1R01GM083600-01)Z.Xu is also partially supported by the Charlotte Research Institute through a Duke Postdoctoral Fellowship.
文摘This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid.The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid.With the proposed technique,the computation cost of collocation matrix entries is reduced from O(M2N4)to O(MN4),where N2 is the number of spherical harmonics(i.e.,size of the matrix)and M is the number of one-dimensional integration quadrature points.Numerical results demonstrate the spectral accuracy of the method.