利用经验模态分解(empirical mode decomposition,EMD)、自相关函数一阶导数比值差(ratio difference of autocorrelation function first-order derivative,_(RDA))和多重分形理论,结合玉米盆栽实验,研究了铜(Cu^(2+))、铅(Pb^(2+))离...利用经验模态分解(empirical mode decomposition,EMD)、自相关函数一阶导数比值差(ratio difference of autocorrelation function first-order derivative,_(RDA))和多重分形理论,结合玉米盆栽实验,研究了铜(Cu^(2+))、铅(Pb^(2+))离子不同胁迫梯度下玉米叶片光谱去噪、叶片重金属污染的Cu和Pb元素区分以及叶片中Cu、Pb元素含量预测方法。通过光谱数据的EMD去噪与重构处理,得到不同浓度Cu、Pb胁迫下玉米叶片重构光谱;利用光谱自相关函数一阶导数(autocorrelation function first derivative,AFFD)及其比值差(_(RDA)),建立了Cu^(2+)、Pb^(2+)不同胁迫梯度下玉米叶片重构光谱的_(RDA)变化量(Cu_(RDA)、Pb_(RDA))计算公式;依据_(RDA)变化量曲线中紫光、绿峰、红光、红边、近谷、近峰多个波谱特征区间的Cu_(RDA)和Pb_(RDA)计算值,可明显地区分出叶片的Cu、Pb污染类别;另外,根据实测的玉米叶片中叶绿素、Cu^(2+)、Pb^(2+)含量与叶片重构光谱的多重分形谱参量之间相关性,构建了叶片中Cu^(2+)、Pb^(2+)含量反演的线性回归预测模型,经验证模型精度较高。展开更多
多维核磁共振(Nuclear Magnetic Resonance,NMR)利用多维波谱来分析分子结构,被广泛用于化学、生物学和医学等领域,但信号采样时间随波谱维度和采样点数增加而迅速增长.非均匀采样通过降低间接维采样点数来加速数据采集,并引入合理的重...多维核磁共振(Nuclear Magnetic Resonance,NMR)利用多维波谱来分析分子结构,被广泛用于化学、生物学和医学等领域,但信号采样时间随波谱维度和采样点数增加而迅速增长.非均匀采样通过降低间接维采样点数来加速数据采集,并引入合理的重建方法获得完整的NMR波谱.如何快速重建高质量的波谱,是NMR信号处理研究的前沿.本文主要综述近年来基于低秩矩阵的NMR波谱重建方法的发展.首先介绍了低秩矩阵的相关数学基础;然后从一般低秩矩阵和结构化低秩汉克尔矩阵两个角度来论述重建模型,并讨论相关的NMR波谱应用;最后分析了该技术存在的不足,并展望其未来发展的趋势.展开更多
文摘利用经验模态分解(empirical mode decomposition,EMD)、自相关函数一阶导数比值差(ratio difference of autocorrelation function first-order derivative,_(RDA))和多重分形理论,结合玉米盆栽实验,研究了铜(Cu^(2+))、铅(Pb^(2+))离子不同胁迫梯度下玉米叶片光谱去噪、叶片重金属污染的Cu和Pb元素区分以及叶片中Cu、Pb元素含量预测方法。通过光谱数据的EMD去噪与重构处理,得到不同浓度Cu、Pb胁迫下玉米叶片重构光谱;利用光谱自相关函数一阶导数(autocorrelation function first derivative,AFFD)及其比值差(_(RDA)),建立了Cu^(2+)、Pb^(2+)不同胁迫梯度下玉米叶片重构光谱的_(RDA)变化量(Cu_(RDA)、Pb_(RDA))计算公式;依据_(RDA)变化量曲线中紫光、绿峰、红光、红边、近谷、近峰多个波谱特征区间的Cu_(RDA)和Pb_(RDA)计算值,可明显地区分出叶片的Cu、Pb污染类别;另外,根据实测的玉米叶片中叶绿素、Cu^(2+)、Pb^(2+)含量与叶片重构光谱的多重分形谱参量之间相关性,构建了叶片中Cu^(2+)、Pb^(2+)含量反演的线性回归预测模型,经验证模型精度较高。
文摘多维核磁共振(Nuclear Magnetic Resonance,NMR)利用多维波谱来分析分子结构,被广泛用于化学、生物学和医学等领域,但信号采样时间随波谱维度和采样点数增加而迅速增长.非均匀采样通过降低间接维采样点数来加速数据采集,并引入合理的重建方法获得完整的NMR波谱.如何快速重建高质量的波谱,是NMR信号处理研究的前沿.本文主要综述近年来基于低秩矩阵的NMR波谱重建方法的发展.首先介绍了低秩矩阵的相关数学基础;然后从一般低秩矩阵和结构化低秩汉克尔矩阵两个角度来论述重建模型,并讨论相关的NMR波谱应用;最后分析了该技术存在的不足,并展望其未来发展的趋势.