Antibiotic-resistant bacteria contamination in environments imposes great threats to human life health.This research aims to develop novel targeted antibacterial biochars for achieving high selectivity to kill pathoge...Antibiotic-resistant bacteria contamination in environments imposes great threats to human life health.This research aims to develop novel targeted antibacterial biochars for achieving high selectivity to kill pathogenic Escherichia coli(E.coli).The glycopolymer N-halamine-modified biochars(i.e.,BCPMA-Cl)were synthesized by the modification of biochars with poly[2-(methacrylamido)glucopyranose-coacrylamide](P(MAG-co-AM),followed by chlorination treatment.Based on the results of FTIR,turbidity,XPS,and UV–vis,BCPMA-Cl was successfully synthesized and demonstrated to be able to eliminate Staphylococcus aureus(S.aureus)and E.coli.Especially,BCPMA-Cl possessed extremely potent to specific-killing 10^(4) CFU·ml^(-1) of E.coli with lower hemolytic activity(<5%).Additionally,the antibacterial mechanisms of BCPMA-Cl against bacteria were contact-killing and release-killing contributed by active chlorine(i.e.,Cl^(+)).Therefore,this work provided a cost-effective and facile approach for preparation of functional biochars used for bacteria-specific therapeutic applications via livestock pollutants as well as showing a promising strategy to avoid bacterial resistance.展开更多
基金supported by the National Natural Science Foundation of China(21304044,51663019,and 22062017)the Natural Science Foundation of Inner Mongolia Autonomous Region(2015MS0520,2019JQ03 and 2019BS02004)+2 种基金the State Key Laboratory of Medicinal Chemical Biology(201603006 and 2018051)the State Key Laboratory of Polymer Physics and Chemistry(2018-08)the Program of Higher-Level Talents of Inner Mongolia University(30105-125136)。
文摘Antibiotic-resistant bacteria contamination in environments imposes great threats to human life health.This research aims to develop novel targeted antibacterial biochars for achieving high selectivity to kill pathogenic Escherichia coli(E.coli).The glycopolymer N-halamine-modified biochars(i.e.,BCPMA-Cl)were synthesized by the modification of biochars with poly[2-(methacrylamido)glucopyranose-coacrylamide](P(MAG-co-AM),followed by chlorination treatment.Based on the results of FTIR,turbidity,XPS,and UV–vis,BCPMA-Cl was successfully synthesized and demonstrated to be able to eliminate Staphylococcus aureus(S.aureus)and E.coli.Especially,BCPMA-Cl possessed extremely potent to specific-killing 10^(4) CFU·ml^(-1) of E.coli with lower hemolytic activity(<5%).Additionally,the antibacterial mechanisms of BCPMA-Cl against bacteria were contact-killing and release-killing contributed by active chlorine(i.e.,Cl^(+)).Therefore,this work provided a cost-effective and facile approach for preparation of functional biochars used for bacteria-specific therapeutic applications via livestock pollutants as well as showing a promising strategy to avoid bacterial resistance.