基于自然场景图像的人体行为识别方法中遮挡、背景干扰、光照不均匀等因素影响识别结果,利用人体三维骨架序列的行为识别方法可以克服上述缺点。首先,考虑人体行为的时空特性,提出一种时空特征融合深度学习网络人体骨架行为识别方法;其...基于自然场景图像的人体行为识别方法中遮挡、背景干扰、光照不均匀等因素影响识别结果,利用人体三维骨架序列的行为识别方法可以克服上述缺点。首先,考虑人体行为的时空特性,提出一种时空特征融合深度学习网络人体骨架行为识别方法;其次,根据骨架几何特征建立视角不变性特征表示,CNN(Convolutional Neural Network)网络学习骨架的局部空域特征,作用于空域的LSTM(Long Short Term Memory)网络学习骨架空域节点之间的相关性特征,作用于时域的LSTM网络学习骨架序列时空关联性特征;最后,利用NTU RGB+D数据库验证文中算法。实验结果表明:算法识别精度有所提高,对于多视角骨架具有较强的鲁棒性。展开更多
Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combin...Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.展开更多
文摘基于自然场景图像的人体行为识别方法中遮挡、背景干扰、光照不均匀等因素影响识别结果,利用人体三维骨架序列的行为识别方法可以克服上述缺点。首先,考虑人体行为的时空特性,提出一种时空特征融合深度学习网络人体骨架行为识别方法;其次,根据骨架几何特征建立视角不变性特征表示,CNN(Convolutional Neural Network)网络学习骨架的局部空域特征,作用于空域的LSTM(Long Short Term Memory)网络学习骨架空域节点之间的相关性特征,作用于时域的LSTM网络学习骨架序列时空关联性特征;最后,利用NTU RGB+D数据库验证文中算法。实验结果表明:算法识别精度有所提高,对于多视角骨架具有较强的鲁棒性。
基金supported by National Natural Science Foundation of China(No.61103123)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.