Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has ...Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.展开更多
Based on the GIMMS AVHRR NDVI data (8 km spatial resolution) for 1982-2000, the SPOT VEGETATION NDVI data (1 km spatial resolution) for 1998-2009, and observa- tional plant biomass data, the CASA model was used to...Based on the GIMMS AVHRR NDVI data (8 km spatial resolution) for 1982-2000, the SPOT VEGETATION NDVI data (1 km spatial resolution) for 1998-2009, and observa- tional plant biomass data, the CASA model was used to model changes in alpine grassland net primary production (NPP) on the Tibetan Plateau (TP). This study will help to evaluate the health conditions of the alpine grassland ecosystem, and is of great importance to the pro- motion of sustainable development of plateau pasture and to the understanding of the func- tion of the national ecological security shelter on the TP. The spatio-temporal characteristics of NPP change were investigated using spatial statistical analysis, separately on the basis of physico-geographical factors (natural zone, altitude, latitude and longitude), river basin, and county-level administrative area. Data processing was carried out using an ENVI 4.8 platform, while an ArcGIS 9.3 and ANUSPLIN platform was used to conduct the spatial analysis and mapping. The primary results are as follows: (1) The NPP of alpine grassland on the TP gradually decreases from the southeast to the northwest, which corresponds to gradients in precipitation and temperature. From 1982 to 2009, the average annual total NPP in the TP alpine grassland was 177.2x1012 gC yrl(yr represents year), while the average annual NPP was 120.8 gC m^-2 yr^-1. (2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m^-2 yr^-1 in 1982 to 129.9 gC m^-2 yr^-1 in 2009, with an overall increase of 13.3%; 32.56% of the total alpine grassland on the TP showed a significant increase in NPP, while only 5.55% showed a significant decrease over this 28-year period. (3) Spatio-temporal characteristics are an important control on an- nual NPP in alpine grassland: a) NPP increased in most of the natural zones on the TP, only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive 展开更多
High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for re...High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographica展开更多
Two types of changes in apparent resistivity (AR) have been linked to earthquake occurrences. This paper studies the changes and their causes, in detail with the ultimate purpose of developing and assessing a method o...Two types of changes in apparent resistivity (AR) have been linked to earthquake occurrences. This paper studies the changes and their causes, in detail with the ultimate purpose of developing and assessing a method of earthquake (EQ) prediction. The AR changes of the first type (CFT) are considered to be precursors related to earthquakes (EQs); these appear mostly in the medium-term period before EQs and in the short-term period preceding EQs. The changes of the second type (CST) are characterized by a turning anomaly of a long-trend AR variation or the drastically descending/ascending anomaly superimposed on such a variation; these appear synchronously in large areas, such as the Chinese mainland, and northern and northwestern China, ect. Their spatio-temporal clusters correspond well to high seismicities in the areas and distant great EQs around the Chinese mainland. Based on the behaviors of the two types of changes, the AR changes observed prior to the Ms8.0 Wenchuan EQ of 2008 are studied. The results show that in the medium-term period before the EQ, noticeable anomalies appeared synchronously at four stations around the Songpan-Ganzi active block, but only weak upward changes were observed in the short-term period preceding the EQ, which caused the prediction of the imminent EQ to fail.展开更多
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonab...The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multi-temporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the cor- relation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3x3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source re- gion of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI cha展开更多
Based on spatial interpolation rainfall of the ground gauge measurement,we proposed a method to comprehensively evaluate and compare the accuracy of satellite rainfall estimates (SREs) at three spatial scales:0.25...Based on spatial interpolation rainfall of the ground gauge measurement,we proposed a method to comprehensively evaluate and compare the accuracy of satellite rainfall estimates (SREs) at three spatial scales:0.25°×0.25° grid scale,sub-catchment scale and the whole basin scale.Using this method,we evaluated the accuracy of six high-resolution monthly SREs (TRMM 3B42 V6,3B42RT V6,CMORPH,GSMaP MWR+,GSMaP MVK+ and PERSIANN) and revealed the spatio-temporal variation of the SRE accuracy based on spatial interpolated rainfall from a dense network of 325 gauges during 2003-2009 over the Ganjiang River Basin in the Southeast China.The results showed that ground gauge-calibrated 3B42 had the highest accuracy with slight overestimation,whereas the other five uncalibrated SREs had severe underestimation.The accuracy of the six SREs in wet seasons was remarkably higher than that in the dry seasons.When the time scale was expanded,the accuracy of SRE,particularly 3B42,increased.Furthermore,the accuracy of SREs was relatively low in the western mountains and northern piedmont areas,while it was relatively high in the central and southeastern hills and basins of the Ganjiang River Basin.When the space scale was expanded,the accuracy of the six SREs gradually increased.This study provided an example for of SRE accuracy validation in other regions,and a direct basis for further study of SRE-based hydrological process.展开更多
This paper uses data for the period 1950-2050 compiled by the United Nations Population Division together with methods including spatial autocorrelation analysis, hie- rarchical cluster analysis and the standard devia...This paper uses data for the period 1950-2050 compiled by the United Nations Population Division together with methods including spatial autocorrelation analysis, hie- rarchical cluster analysis and the standard deviational ellipse, to analyze the spatio-temporal evolution of population and urbanization in the 75 countries located along the routes of the Silk Road Economic Belt and the 21st-century Maritime Silk Road, to identify future popula- tion growth and urbanization hotspots. The results reveal the following: First, in 2015, the majority of Belt and Road countries in Europe, South Asia and Southeast Asia had high population densities, whereas most countries in Central Asia, North Africa and West Asia, as well as Russia and Mongolia, had low population densities; the majority of countries in South Asia, Southeast Asia, Central Asia, West Asia and North Africa had rapid population growth, whereas many countries in Europe had negative population growth; and five Belt and Road countries are in the initial stage of urbanization, 44 countries are in the acceleration stage of urbanization, and 26 are in the terminal stage of urbanization. Second, in the century from 1950 to 2050, the mean center of the study area's population is consistently located in the border region between India and China. Prior to 2000, the trajectory of the mean center was from northwest to southeast, but from 2000 it is on a southward trajectory, as the population of the study area becomes more concentrated. Future population growth hotspots are predicted to be in South Asia, West Asia and Southeast Asia, and hotspot countries for the period 2015-2030 include India, China, Pakistan and Indonesia, though China will move into nega- tive population growth after 2030. Third, the overall urban population of Belt and Road coun- tries increased from 22% in 1950 to 49% in 2015, and it is expected to gradually catch up with the world average, reaching 64% in 2050. The different levels of urbanization in different countries display significant 展开更多
As important mechanisms of regional strategy and policy, prefecture-level regions have played an increasingly significant role in the development of China's economy. However, little research has grasped the essence o...As important mechanisms of regional strategy and policy, prefecture-level regions have played an increasingly significant role in the development of China's economy. However, little research has grasped the essence of the economic development stage and the spatio-temporal evolution process at the prefecture level; this may lead to biased policies and their ineffective implementations. Based on Chenery's economic development theory, this paper identifies China's economic development stages at both national and prefectural levels. Both the Global Moran I index and the Getis-Ord Gi* index are employed to investigate the spatio-temporal evolution of China's economic development from 1990 to 2010. Major conclusions can be drawn as follows. (1) China's economic development is generally in the state of agglomeration. It entered the Primary Production Stage in 1990, and the Middle Industrialized Stage in 2010, with a 'balanced-unbalanced-gradually rebalanced' pattern in the process. (2) China's rapid economic growth experienced a spatial shift from the coastal areas to the the inland areas. Most advanced cities in mid-western China can be roughly categorized into regional hub cities and resource-dependent cities. (3) Hot spots in China's economy moved northward and westward. The interactions between cities and prefectures became weaker in Eastern China, while cities and prefectures in Central and Western China were still at the stage of individual development, with limited effect on the surrounding cities. (4) While the overall growth rate of China's economy has gradually slowed down during the past two decades, the growth rate of cities and prefectures in Central and Western China was much faster than those in coastal areas. (5) Areas rich in resources, such as Xinjiang and Inner Mongolia, have become the new hot spots of economic growth in recent years. For these regions, however, more attention needs to be paid to their unbalanced industrial structures and the lagging social d展开更多
Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the glo...Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia(1737.23 × 104 km^2), while the grassland area in Europe was relatively small(202.83 × 10~4 km^2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas(560.10 g C/(m^2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m^2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation(AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.展开更多
Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over t...Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.展开更多
With the rapid development of the economy,acid rain has become one of the major environmental problems that endanger human health.Being the largest developing country,the environmental problems caused by acid rain are...With the rapid development of the economy,acid rain has become one of the major environmental problems that endanger human health.Being the largest developing country,the environmental problems caused by acid rain are of increasing concern with the rapid industrialization and urbanization in China.Recently,many researchers have focused on acid rain.To better understand the temporal and spatial dynamics of acid rain in China,the monitoring data on acid rain from 1998 to 2018 were studied using ArcGIS 10.2.The results show that the proportion of acid rain cities,the frequency,and the area of acid rain were decreasing,however,the situation still remains serious.Overall,the chemical type of acid rain was mainly sulfuric acid rain.However,the concentration ratio of SO_(4)^(2-)/NO_(3)^(-)-decreased by 81.90%in 2018 compared with 1998,and presented a decreasing trend,which indicates that the contribution of nitrate to precipitation acidity has been increasing year by year.This research will help us to understand the distribution characteristics and causes of acid rain in China,and it may provide an effective reference for the prevention and control of acid rain in China.展开更多
The spatio-temporal variability of Northern Hemisphere Sea Level Pressure (SLP) and precipitation over the mid-to-low reaches of the Yangtze River (PMLY) is analyzed jointly using the multi-taper/singular value de...The spatio-temporal variability of Northern Hemisphere Sea Level Pressure (SLP) and precipitation over the mid-to-low reaches of the Yangtze River (PMLY) is analyzed jointly using the multi-taper/singular value decomposition method (MTM-SVD). Statistically significant narrow frequency bands are obtained from the local fractional variance (LFV) spectrum. Significant interdecadal (i.e., 16-to-18-year periods) and interannual (i.e., 3-to-6-year periods) signals are identified. Moreover, a significant quasi-biennial signal is identified but only for PMLY data. The spatial joint evolution of patterns obtained for peaks in the LFV spectrum sheds light on relationships between SLP and PMLY: the Arctic Oscillation (AO) modulates the variability of the PMLY while the interannual variability of PMLY is in phase with the Northern Atlantic Oscillation (NAO) and the Northern Pacific Oscillation (NPO).展开更多
Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are st...Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.展开更多
基金supported jointly by the National Basic Research Program of China 973 Projects (Grant No. 2010CB950403)the National Special Scientific Research Project for Public Interest (Meteorology) (Grant No. GYHY201006021)+1 种基金the Chinese Academy of Sciences(Grant No. KZCX2-EW-QN204)the National Natural Science Foundation of China (Grant No. 40975046)
文摘Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.
基金National Basic Research Program of China,No.2010CB951704Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB03030501No.XDA05060704
文摘Based on the GIMMS AVHRR NDVI data (8 km spatial resolution) for 1982-2000, the SPOT VEGETATION NDVI data (1 km spatial resolution) for 1998-2009, and observa- tional plant biomass data, the CASA model was used to model changes in alpine grassland net primary production (NPP) on the Tibetan Plateau (TP). This study will help to evaluate the health conditions of the alpine grassland ecosystem, and is of great importance to the pro- motion of sustainable development of plateau pasture and to the understanding of the func- tion of the national ecological security shelter on the TP. The spatio-temporal characteristics of NPP change were investigated using spatial statistical analysis, separately on the basis of physico-geographical factors (natural zone, altitude, latitude and longitude), river basin, and county-level administrative area. Data processing was carried out using an ENVI 4.8 platform, while an ArcGIS 9.3 and ANUSPLIN platform was used to conduct the spatial analysis and mapping. The primary results are as follows: (1) The NPP of alpine grassland on the TP gradually decreases from the southeast to the northwest, which corresponds to gradients in precipitation and temperature. From 1982 to 2009, the average annual total NPP in the TP alpine grassland was 177.2x1012 gC yrl(yr represents year), while the average annual NPP was 120.8 gC m^-2 yr^-1. (2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m^-2 yr^-1 in 1982 to 129.9 gC m^-2 yr^-1 in 2009, with an overall increase of 13.3%; 32.56% of the total alpine grassland on the TP showed a significant increase in NPP, while only 5.55% showed a significant decrease over this 28-year period. (3) Spatio-temporal characteristics are an important control on an- nual NPP in alpine grassland: a) NPP increased in most of the natural zones on the TP, only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA19040401China Postdoctoral Science Foundation,No.2016M600121+1 种基金National Natural Science Foundation of China,No.41701173,No.41501137The State Key Laboratory of Resources and Environmental Information System
文摘High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographica
基金supported by National Key Technology Research and Development Program of China (Grant Nos. 2008BAC35B01-8 and 2006BAC01B02-04-03)
文摘Two types of changes in apparent resistivity (AR) have been linked to earthquake occurrences. This paper studies the changes and their causes, in detail with the ultimate purpose of developing and assessing a method of earthquake (EQ) prediction. The AR changes of the first type (CFT) are considered to be precursors related to earthquakes (EQs); these appear mostly in the medium-term period before EQs and in the short-term period preceding EQs. The changes of the second type (CST) are characterized by a turning anomaly of a long-trend AR variation or the drastically descending/ascending anomaly superimposed on such a variation; these appear synchronously in large areas, such as the Chinese mainland, and northern and northwestern China, ect. Their spatio-temporal clusters correspond well to high seismicities in the areas and distant great EQs around the Chinese mainland. Based on the behaviors of the two types of changes, the AR changes observed prior to the Ms8.0 Wenchuan EQ of 2008 are studied. The results show that in the medium-term period before the EQ, noticeable anomalies appeared synchronously at four stations around the Songpan-Ganzi active block, but only weak upward changes were observed in the short-term period preceding the EQ, which caused the prediction of the imminent EQ to fail.
基金National Basic Task Project, No.2006FY110200Strategic pilot programs of the Chinese Academy of Sciences,No.XDA05060700Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes, No.200909050
文摘The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multi-temporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the cor- relation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3x3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source re- gion of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI cha
基金supported by the National Natural Science Foundation of China (Grant No. 51109136)the Commonweal Science Research Project of Ministry of Water Resources of China (Grant Nos. 201001002,201101004)the Science and Technology Development Fund,Ministry of Water Resources of China (Grant No. TG1109)
文摘Based on spatial interpolation rainfall of the ground gauge measurement,we proposed a method to comprehensively evaluate and compare the accuracy of satellite rainfall estimates (SREs) at three spatial scales:0.25°×0.25° grid scale,sub-catchment scale and the whole basin scale.Using this method,we evaluated the accuracy of six high-resolution monthly SREs (TRMM 3B42 V6,3B42RT V6,CMORPH,GSMaP MWR+,GSMaP MVK+ and PERSIANN) and revealed the spatio-temporal variation of the SRE accuracy based on spatial interpolated rainfall from a dense network of 325 gauges during 2003-2009 over the Ganjiang River Basin in the Southeast China.The results showed that ground gauge-calibrated 3B42 had the highest accuracy with slight overestimation,whereas the other five uncalibrated SREs had severe underestimation.The accuracy of the six SREs in wet seasons was remarkably higher than that in the dry seasons.When the time scale was expanded,the accuracy of SRE,particularly 3B42,increased.Furthermore,the accuracy of SREs was relatively low in the western mountains and northern piedmont areas,while it was relatively high in the central and southeastern hills and basins of the Ganjiang River Basin.When the space scale was expanded,the accuracy of the six SREs gradually increased.This study provided an example for of SRE accuracy validation in other regions,and a direct basis for further study of SRE-based hydrological process.
基金The Strategic Priority Research Program of the CAS,Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE),No.XDA20040400Key Deployment Project of the CAS,No.ZDRW-ZS-2016-6-2
文摘This paper uses data for the period 1950-2050 compiled by the United Nations Population Division together with methods including spatial autocorrelation analysis, hie- rarchical cluster analysis and the standard deviational ellipse, to analyze the spatio-temporal evolution of population and urbanization in the 75 countries located along the routes of the Silk Road Economic Belt and the 21st-century Maritime Silk Road, to identify future popula- tion growth and urbanization hotspots. The results reveal the following: First, in 2015, the majority of Belt and Road countries in Europe, South Asia and Southeast Asia had high population densities, whereas most countries in Central Asia, North Africa and West Asia, as well as Russia and Mongolia, had low population densities; the majority of countries in South Asia, Southeast Asia, Central Asia, West Asia and North Africa had rapid population growth, whereas many countries in Europe had negative population growth; and five Belt and Road countries are in the initial stage of urbanization, 44 countries are in the acceleration stage of urbanization, and 26 are in the terminal stage of urbanization. Second, in the century from 1950 to 2050, the mean center of the study area's population is consistently located in the border region between India and China. Prior to 2000, the trajectory of the mean center was from northwest to southeast, but from 2000 it is on a southward trajectory, as the population of the study area becomes more concentrated. Future population growth hotspots are predicted to be in South Asia, West Asia and Southeast Asia, and hotspot countries for the period 2015-2030 include India, China, Pakistan and Indonesia, though China will move into nega- tive population growth after 2030. Third, the overall urban population of Belt and Road coun- tries increased from 22% in 1950 to 49% in 2015, and it is expected to gradually catch up with the world average, reaching 64% in 2050. The different levels of urbanization in different countries display significant
基金National Natural Science Foundation of China, No.41171107
文摘As important mechanisms of regional strategy and policy, prefecture-level regions have played an increasingly significant role in the development of China's economy. However, little research has grasped the essence of the economic development stage and the spatio-temporal evolution process at the prefecture level; this may lead to biased policies and their ineffective implementations. Based on Chenery's economic development theory, this paper identifies China's economic development stages at both national and prefectural levels. Both the Global Moran I index and the Getis-Ord Gi* index are employed to investigate the spatio-temporal evolution of China's economic development from 1990 to 2010. Major conclusions can be drawn as follows. (1) China's economic development is generally in the state of agglomeration. It entered the Primary Production Stage in 1990, and the Middle Industrialized Stage in 2010, with a 'balanced-unbalanced-gradually rebalanced' pattern in the process. (2) China's rapid economic growth experienced a spatial shift from the coastal areas to the the inland areas. Most advanced cities in mid-western China can be roughly categorized into regional hub cities and resource-dependent cities. (3) Hot spots in China's economy moved northward and westward. The interactions between cities and prefectures became weaker in Eastern China, while cities and prefectures in Central and Western China were still at the stage of individual development, with limited effect on the surrounding cities. (4) While the overall growth rate of China's economy has gradually slowed down during the past two decades, the growth rate of cities and prefectures in Central and Western China was much faster than those in coastal areas. (5) Areas rich in resources, such as Xinjiang and Inner Mongolia, have become the new hot spots of economic growth in recent years. For these regions, however, more attention needs to be paid to their unbalanced industrial structures and the lagging social d
基金Under the auspices of Asia Pacific Network for Global Change Research(APN)Global Change Fund Project(No.ARCP2015-03CMY-Li)+2 种基金National Natural Science Foundation of China(No.41271361,41501575)National Key Research and Development Project(No.2018YFD0800201)Key Project of Chinese National Programs for Fundamental Research and Development(No.2010CB950702)
文摘Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia(1737.23 × 104 km^2), while the grassland area in Europe was relatively small(202.83 × 10~4 km^2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas(560.10 g C/(m^2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m^2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation(AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.
基金supported and financed by the National Basic Research Program of China(973 Program,2010CB951504)the National Natural Science Foundation of China(41201089 and 41271112)
文摘Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.
基金The National Natural Science Foundation of China(U1701236)The Science and Technology Planning Project of Guangdong Province(2019B030301007)。
文摘With the rapid development of the economy,acid rain has become one of the major environmental problems that endanger human health.Being the largest developing country,the environmental problems caused by acid rain are of increasing concern with the rapid industrialization and urbanization in China.Recently,many researchers have focused on acid rain.To better understand the temporal and spatial dynamics of acid rain in China,the monitoring data on acid rain from 1998 to 2018 were studied using ArcGIS 10.2.The results show that the proportion of acid rain cities,the frequency,and the area of acid rain were decreasing,however,the situation still remains serious.Overall,the chemical type of acid rain was mainly sulfuric acid rain.However,the concentration ratio of SO_(4)^(2-)/NO_(3)^(-)-decreased by 81.90%in 2018 compared with 1998,and presented a decreasing trend,which indicates that the contribution of nitrate to precipitation acidity has been increasing year by year.This research will help us to understand the distribution characteristics and causes of acid rain in China,and it may provide an effective reference for the prevention and control of acid rain in China.
文摘The spatio-temporal variability of Northern Hemisphere Sea Level Pressure (SLP) and precipitation over the mid-to-low reaches of the Yangtze River (PMLY) is analyzed jointly using the multi-taper/singular value decomposition method (MTM-SVD). Statistically significant narrow frequency bands are obtained from the local fractional variance (LFV) spectrum. Significant interdecadal (i.e., 16-to-18-year periods) and interannual (i.e., 3-to-6-year periods) signals are identified. Moreover, a significant quasi-biennial signal is identified but only for PMLY data. The spatial joint evolution of patterns obtained for peaks in the LFV spectrum sheds light on relationships between SLP and PMLY: the Arctic Oscillation (AO) modulates the variability of the PMLY while the interannual variability of PMLY is in phase with the Northern Atlantic Oscillation (NAO) and the Northern Pacific Oscillation (NPO).
基金Foundation: National Natural Science Foundation of China, No.41171328, No.41201184, No.41101537 National Basic Program of China, No.2010CB951502
文摘Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.