近年来很多学者开展了模糊积分的相关研究,并将模糊积分应用于各种分类问题,而模糊测度的确定则是模糊积分计算的重点和难点。将并行计算和稀疏存储应用在模糊积分求解上,分别解决模糊积分计算中的时间复杂度和空间复杂度问题,并提出一...近年来很多学者开展了模糊积分的相关研究,并将模糊积分应用于各种分类问题,而模糊测度的确定则是模糊积分计算的重点和难点。将并行计算和稀疏存储应用在模糊积分求解上,分别解决模糊积分计算中的时间复杂度和空间复杂度问题,并提出一种高效率模糊积分算法——基于并行和稀疏框架的模糊积分(parallel and sparse frame based fuzzy integral,PSFI)。实验表明,随着计算资源的增加,PSFI算法的加速比和效率下降较低。在变量存储上,PSFI算法在较多特征的数据集上对存储空间减少数千倍。最后,提出的PSFI算法相比之前提出的多重模糊积分(multiple nonlinear integral,MNI)算法,有较高的分类准确率。展开更多
For sparse storage and quick access to projection matrix based on vector type, this paper proposes a method to solve the problems of the repetitive computation of projection coefficient, the large space occupation and...For sparse storage and quick access to projection matrix based on vector type, this paper proposes a method to solve the problems of the repetitive computation of projection coefficient, the large space occupation and low retrieval efficiency of projection matrix in iterative reconstruction algorithms, which calculates only once the projection coefficient and stores the data sparsely in binary format based on the variable size of library vector type. In the iterative reconstruction process, these binary files are accessed iteratively and the vector type is used to quickly obtain projection coefficients of each ray. The results of the experiments show that the method reduces the memory space occupation of the projection matrix and the computation of projection coefficient in iterative process, and accelerates the reconstruction speed.展开更多
文摘近年来很多学者开展了模糊积分的相关研究,并将模糊积分应用于各种分类问题,而模糊测度的确定则是模糊积分计算的重点和难点。将并行计算和稀疏存储应用在模糊积分求解上,分别解决模糊积分计算中的时间复杂度和空间复杂度问题,并提出一种高效率模糊积分算法——基于并行和稀疏框架的模糊积分(parallel and sparse frame based fuzzy integral,PSFI)。实验表明,随着计算资源的增加,PSFI算法的加速比和效率下降较低。在变量存储上,PSFI算法在较多特征的数据集上对存储空间减少数千倍。最后,提出的PSFI算法相比之前提出的多重模糊积分(multiple nonlinear integral,MNI)算法,有较高的分类准确率。
基金National Natural Science Foundation of China(No.6171177)
文摘For sparse storage and quick access to projection matrix based on vector type, this paper proposes a method to solve the problems of the repetitive computation of projection coefficient, the large space occupation and low retrieval efficiency of projection matrix in iterative reconstruction algorithms, which calculates only once the projection coefficient and stores the data sparsely in binary format based on the variable size of library vector type. In the iterative reconstruction process, these binary files are accessed iteratively and the vector type is used to quickly obtain projection coefficients of each ray. The results of the experiments show that the method reduces the memory space occupation of the projection matrix and the computation of projection coefficient in iterative process, and accelerates the reconstruction speed.