为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一...为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一致性约束、稀疏矩阵类间不一致性约束,其中的稀疏矩阵类内一致性约束用l2,p矩阵范数实现。该算法的测试阶段,计算新样本的稀疏重构系数以用于分类。和传统的基于稀疏表示的分类方法比较,该方法求稀疏重构系数时对样本不再单个处理,而是对同类样本整体处理,且充分利用同类样本的相似性和不同类样本的相异性,提高了基于稀疏表示的图像分类方法的分类精度。实验结果表明:该方法进一步提高了图像分类的准确率,在AR、Extended Yale B和Fifteen Scene Category数据库上和基于稀疏表示的分类方法(Sparse representation based classification,SRC)相比较,识别率分别提高了20.11%、20.88%和2.13%。展开更多
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
文摘为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一致性约束、稀疏矩阵类间不一致性约束,其中的稀疏矩阵类内一致性约束用l2,p矩阵范数实现。该算法的测试阶段,计算新样本的稀疏重构系数以用于分类。和传统的基于稀疏表示的分类方法比较,该方法求稀疏重构系数时对样本不再单个处理,而是对同类样本整体处理,且充分利用同类样本的相似性和不同类样本的相异性,提高了基于稀疏表示的图像分类方法的分类精度。实验结果表明:该方法进一步提高了图像分类的准确率,在AR、Extended Yale B和Fifteen Scene Category数据库上和基于稀疏表示的分类方法(Sparse representation based classification,SRC)相比较,识别率分别提高了20.11%、20.88%和2.13%。
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.