期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Bregman分离执行算法的稀疏角度相位衬度计算层析重建
1
作者 李镜 李梦婕 孙怡 《光学学报》 EI CAS CSCD 北大核心 2013年第10期87-97,共11页
相位衬度成像及其计算层析(CT)技术不同于传统的吸收衬度成像,是一种新型的X射线成像技术,因具有高灵敏度、高衬度分辨率、能对软组织成像等特点而受到广泛关注。鉴于相位衬度CT往往导致非常长的辐射时间和巨大的辐射剂量,而稀疏角度重... 相位衬度成像及其计算层析(CT)技术不同于传统的吸收衬度成像,是一种新型的X射线成像技术,因具有高灵敏度、高衬度分辨率、能对软组织成像等特点而受到广泛关注。鉴于相位衬度CT往往导致非常长的辐射时间和巨大的辐射剂量,而稀疏角度重建在降低辐射剂量方面又有着非常明显的优势,因此,研究针对相位衬度CT的稀疏角度重建算法就变得非常有意义。近年来,针对解决稀疏重建的Bregman算法在图像处理方面被广泛应用。将Bregman分离执行(BOS)算法引入到微分相位衬度CT中,提出了一种稀疏角度相位衬度CT的交替迭代重建算法。数值模拟和实验表明,该方法可以在少量的投影数据下获得较好的重建效果。 展开更多
关键词 图像处理 相位衬度计算层析 稀疏角度重建 Bregman分离执行算法 交替迭代
原文传递
A Bayesian-MAP Method Based on TV for CT Image Reconstruction from Sparse and Limited Data 被引量:1
2
作者 QI Hong-liang ZHOU Ling-hong +1 位作者 XU Yuan HONG Hong 《Chinese Journal of Biomedical Engineering(English Edition)》 2017年第2期82-88,共7页
Computed tomography(CT) plays an important role in the field of modern medical imaging. Reducing radiation exposure dose without significantly decreasing image's quality is always a crucial issue. Inspired by the ... Computed tomography(CT) plays an important role in the field of modern medical imaging. Reducing radiation exposure dose without significantly decreasing image's quality is always a crucial issue. Inspired by the outstanding performance of total variation(TV) technique in CT image reconstruction, a TV regularization based Bayesian-MAP(MAP-TV) is proposed to reconstruct the case of sparse view projection and limited angle range imaging. This method can suppress the streak artifacts and geometrical deformation while preserving image edges. We used ordered subset(OS) technique to accelerate the reconstruction speed. Numerical results show that MAP-TV is able to reconstruct a phantom with better visual performance and quantitative evaluation than classical FBP,MLEM and quadrate prior to MAP algorithms. The proposed algorithm can be generalized to cone-beam CT image reconstruction. 展开更多
关键词 COMPUTED TOMOGRAPHY sparse and LIMITED angular reconstruction totalvariation Bayesian-MAP
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部