In this paper,a bioinspired path planning approach for mobile robots is proposed.The approach is based on the sparrow search algorithm,which is an intelligent optimization algorithm inspired by the group wisdom,foragi...In this paper,a bioinspired path planning approach for mobile robots is proposed.The approach is based on the sparrow search algorithm,which is an intelligent optimization algorithm inspired by the group wisdom,foraging,and anti-predation behaviors of sparrows.To obtain high-quality paths and fast convergence,an improved sparrow search algorithm is proposed with three new strategies.First,a linear path strategy is proposed,which can transform the polyline in the corner of the path into a smooth line,to enable the robot to reach the goal faster.Then,a new neighborhood search strategy is used to improve the fitness value of the global optimal individual,and a new position update function is used to speed up the convergence.Finally,a new multi-index comprehensive evaluation method is designed to evaluate these algorithms.Experimental results show that the proposed algorithm has a shorter path and faster convergence than other state-ofthe-art studies.展开更多
Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some excep...Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.展开更多
The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence spe...The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms.展开更多
The target's threat prediction is an essential procedure for the situation analysis in an aerial defense system.However,the traditional threat prediction methods mostly ignore the effect of commander's emotion...The target's threat prediction is an essential procedure for the situation analysis in an aerial defense system.However,the traditional threat prediction methods mostly ignore the effect of commander's emotion.They only predict a target's present threat from the target's features itself,which leads to their poor ability in a complex situation.To aerial targets,this paper proposes a method for its potential threat prediction considering commander emotion(PTP-CE)that uses the Bi-directional LSTM(BiLSTM)network and the backpropagation neural network(BP)optimized by the sparrow search algorithm(SSA).Furthermore,we use the BiLSTM to predict the target's future state from real-time series data,and then adopt the SSA-BP to combine the target's state with the commander's emotion to establish a threat prediction model.Therefore,the target's potential threat level can be obtained by this threat prediction model from the predicted future state and the recognized emotion.The experimental results show that the PTP-CE is efficient for aerial target's state prediction and threat prediction,regardless of commander's emotional effect.展开更多
BMR (basal metabolic rate), body mass and organ masses of tree sparrows (Passer montanus) were measured to analyze the correlation between organ masses and BMR in tree sparrows, and to evaluate the underlying phys...BMR (basal metabolic rate), body mass and organ masses of tree sparrows (Passer montanus) were measured to analyze the correlation between organ masses and BMR in tree sparrows, and to evaluate the underlying physiological causes of difference in BMR. Adult tree sparrows were live-trapped by mist net in Qiqihar City, Heilongjiang Province (47°29′N, 124°02′E). The closed circuit respirometer was used to measure the metabolic rate (MR), and controlled the ambient temperature by using a water bath (±0.5℃). Body masses were measured to the nearest 0.01 g before and after BMR measurements with a Sartorius balance (model BT25S). The mean value was recorded as body mass. Wet and dry masses of several organs were measured, too. BMR was (4.276± 0.385) mL O2/(g·h) and mean body mass was (18.522±0.110) g. Since not all the variables were normal distributed, a log10- transformation of those variables was employed to linearize them, prior to analyses. Simple regression analyses indicated that most organ masses showed a significant high correlation with body mass. Both the small intestine and rectum masses were notable exception to that trend. The body-mass-adjusted residual analysis showed that only the kidney wet mass, brain mass, stomach mass, small mass and rectum wet mass correlated with BMR. In addition, correlations between several organ masses and BMR were observed. Because of the inter-correlations of organ masses, a principal component analysis (PCA) was performed to redefine the morphological variability. The first four components whose eigenvalues were greater than 1 could explain 75.2% variance of BMR. The first component, whose proportion reached 30.19%, was affected mainly by stomach mass, small intestine mass and rectum mass. Therefore, the results supported the hypothesis that BMR was controlled by some "expensive metabolic" organs展开更多
A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent ...A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the pro展开更多
The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of ...The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of charge(SOC)is one of the important parameters.The machine-learning based SOC estimation methods of lithium-ion batteries have attracted substantial interests in recent years.However,a common problem with these models is that their estimation performances are not always stable,which makes them difficult to use in practical applications.To address this problem,an optimized radial basis function neural network(RBF-NN)that combines the concepts of Golden Section Method(GSM)and Sparrow Search Algorithm(SSA)is proposed in this paper.Specifically,GSM is used to determine the optimum number of neurons in hidden layer of the RBF-NN model,and its parameters such as radial base center,connection weights and so on are optimized by SSA,which greatly improve the performance of RBF-NN in SOC estimation.In the experiments,data collected from different working conditions are used to demonstrate the accuracy and generalization ability of the proposed model,and the results of the experiment indicate that the maximum error of the proposed model is less than 2%.展开更多
Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba...Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.展开更多
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat...In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy.展开更多
The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between ...The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems.展开更多
Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based v...Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based variational mode decomposition and Autoregressive Integrated Moving Average(ARIMA)model.High-precision infrasound sensor was utilized in experiments to record signals under twelve varying conditions of debris flow volume and velocity.Variational mode decomposition was performed on the detected raw signals,and the optimal decomposition scale and penalty factor were obtained through the sparrow search algorithm.The Hilbert transform,rescaled range analysis,power spectrum analysis,and Pearson correlation coefficients judgment criteria were employed to separate and reconstruct the signals.Based on the reconstructed infrasound signals,an ARIMA model was constructed to forecast the trend of debris flow infrasound signal.Results reveal that the Hilbert transform effectively separated noise,and the predictive model’s results fell within a 95%confidence interval.The Mean Absolute Percentage Error(MAPE)across four experiments were 4.87%,5.23%,5.32%and 4.47%,respectively,showing a satisfactory accuracy and providing an alternative for predicting debris flow by infrasound signals.展开更多
Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engine...Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engineering-geological environments.There-fore,a high-performance predictive model for tunnel squeezing is necessary.A superior ensemble classifier is put forward in this study,which is composed of four individual classifiers(gradient boosting classifier,extra-trees classifier,AdaBoost classifier,and Logistic regression classifier)and two optimization algorithms(Bayesian optimization(BO)and sparrow search algorithm(SSA)).The training database covers five parameters:tunnel depth(H),rock tunneling quality index(Q),tunnel diameter(D),support stiffness(K),and strength stress ratio(SSR),about which the basic information is accessible at the early design phases.However,the dataset compiled from the literature is insufficient.Thus,the ten proposed methods are used to replace the missing values.During the model training pro-cess,BO shows its strong ability to optimize seventeen hyperparameters.When applied to tune the classifiers’weights,SSA achieves a fast and efficient performance.The novel Shapley Additive Explanations–LightGBM method indicates that the K is the most important input feature,followed by SSR,Q,H,and D,respectively.The ensemble classifier is then validated using the test set and additional his-torical case projects.The validation shows that the model can achieve an accuracy of 98%(i.e.,the error rate is 2%)on the test set,higher than those achieved by previous prediction models.Moreover,the predicted probability could provide warning information for timely support measures.Finally,the application results are illustrated through tests on the tunnel sections that have not yet been excavated in the line of the Sichuan–Tibet railway project.The applied predictive tendencies and laws are in line with the practical experience.In sum-mary,the proposed model’s prediction results are reasonable,and展开更多
基金supported by the National Key R&D Program of China(Grant No.2018YFB1309200)the Opening Project of Shanghai Robot Industry R&D and Transformation Functional Platform.
文摘In this paper,a bioinspired path planning approach for mobile robots is proposed.The approach is based on the sparrow search algorithm,which is an intelligent optimization algorithm inspired by the group wisdom,foraging,and anti-predation behaviors of sparrows.To obtain high-quality paths and fast convergence,an improved sparrow search algorithm is proposed with three new strategies.First,a linear path strategy is proposed,which can transform the polyline in the corner of the path into a smooth line,to enable the robot to reach the goal faster.Then,a new neighborhood search strategy is used to improve the fitness value of the global optimal individual,and a new position update function is used to speed up the convergence.Finally,a new multi-index comprehensive evaluation method is designed to evaluate these algorithms.Experimental results show that the proposed algorithm has a shorter path and faster convergence than other state-ofthe-art studies.
基金supported by grants from the National Natural Science Foundation of China (NSFC, 31330073, 31672292)the Natural Science Foundation of the Department of Education, Hebei Province (YQ2014024)
文摘Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.
基金The Science Foundation of Shanxi Province,China(2020JQ-481,2021JM-224)Aero Science Foundation of China(201951096002).
文摘The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms.
基金the National Natural Science Foundation of China(No.61873196 and No.61501336)the Natural Science Foundation of Hubei Province(2019CFB778)+1 种基金the National Defense Pre-research Foundation of Wuhan University of Science and Technology(GF202007)the Postgraduate Innovation and Entrepreneurship Foundation of Wuhan University of Science and Technology(JCX2020095).
文摘The target's threat prediction is an essential procedure for the situation analysis in an aerial defense system.However,the traditional threat prediction methods mostly ignore the effect of commander's emotion.They only predict a target's present threat from the target's features itself,which leads to their poor ability in a complex situation.To aerial targets,this paper proposes a method for its potential threat prediction considering commander emotion(PTP-CE)that uses the Bi-directional LSTM(BiLSTM)network and the backpropagation neural network(BP)optimized by the sparrow search algorithm(SSA).Furthermore,we use the BiLSTM to predict the target's future state from real-time series data,and then adopt the SSA-BP to combine the target's state with the commander's emotion to establish a threat prediction model.Therefore,the target's potential threat level can be obtained by this threat prediction model from the predicted future state and the recognized emotion.The experimental results show that the PTP-CE is efficient for aerial target's state prediction and threat prediction,regardless of commander's emotional effect.
基金Supported by Natural Foundation for Youth of Daqing Normal College (YZQ004)
文摘BMR (basal metabolic rate), body mass and organ masses of tree sparrows (Passer montanus) were measured to analyze the correlation between organ masses and BMR in tree sparrows, and to evaluate the underlying physiological causes of difference in BMR. Adult tree sparrows were live-trapped by mist net in Qiqihar City, Heilongjiang Province (47°29′N, 124°02′E). The closed circuit respirometer was used to measure the metabolic rate (MR), and controlled the ambient temperature by using a water bath (±0.5℃). Body masses were measured to the nearest 0.01 g before and after BMR measurements with a Sartorius balance (model BT25S). The mean value was recorded as body mass. Wet and dry masses of several organs were measured, too. BMR was (4.276± 0.385) mL O2/(g·h) and mean body mass was (18.522±0.110) g. Since not all the variables were normal distributed, a log10- transformation of those variables was employed to linearize them, prior to analyses. Simple regression analyses indicated that most organ masses showed a significant high correlation with body mass. Both the small intestine and rectum masses were notable exception to that trend. The body-mass-adjusted residual analysis showed that only the kidney wet mass, brain mass, stomach mass, small mass and rectum wet mass correlated with BMR. In addition, correlations between several organ masses and BMR were observed. Because of the inter-correlations of organ masses, a principal component analysis (PCA) was performed to redefine the morphological variability. The first four components whose eigenvalues were greater than 1 could explain 75.2% variance of BMR. The first component, whose proportion reached 30.19%, was affected mainly by stomach mass, small intestine mass and rectum mass. Therefore, the results supported the hypothesis that BMR was controlled by some "expensive metabolic" organs
基金supported by the National Natural Science Foundation of China(Grant No.52125803).
文摘A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the pro
基金This work was supported by the Fundamental Research Funds for the Central Universities(2022MS015)。
文摘The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of charge(SOC)is one of the important parameters.The machine-learning based SOC estimation methods of lithium-ion batteries have attracted substantial interests in recent years.However,a common problem with these models is that their estimation performances are not always stable,which makes them difficult to use in practical applications.To address this problem,an optimized radial basis function neural network(RBF-NN)that combines the concepts of Golden Section Method(GSM)and Sparrow Search Algorithm(SSA)is proposed in this paper.Specifically,GSM is used to determine the optimum number of neurons in hidden layer of the RBF-NN model,and its parameters such as radial base center,connection weights and so on are optimized by SSA,which greatly improve the performance of RBF-NN in SOC estimation.In the experiments,data collected from different working conditions are used to demonstrate the accuracy and generalization ability of the proposed model,and the results of the experiment indicate that the maximum error of the proposed model is less than 2%.
基金This research was funded by Sichuan Science and Technology Program(2023YFSY0013).
文摘Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.
文摘In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy.
基金Project supported by the National Natural Science Foundation of China (Nos.62022015 and 62088101)the Shanghai Municipal Science and Technology Major Project,China(No.2021SHZDZX0100)the Shanghai Municipal Commission of Science and Technology Project,China (No.19511132101)。
文摘The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems.
基金funded by National Key R&D Program of China(No.2022YFC3003403)Sichuan Science and Technology Program(No.2024NSFSC0072)+1 种基金Natural Science Foundation of Hebei Province(No.F2021201031)Geological Survey Project of China Geological Survey(No.DD20230442).
文摘Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based variational mode decomposition and Autoregressive Integrated Moving Average(ARIMA)model.High-precision infrasound sensor was utilized in experiments to record signals under twelve varying conditions of debris flow volume and velocity.Variational mode decomposition was performed on the detected raw signals,and the optimal decomposition scale and penalty factor were obtained through the sparrow search algorithm.The Hilbert transform,rescaled range analysis,power spectrum analysis,and Pearson correlation coefficients judgment criteria were employed to separate and reconstruct the signals.Based on the reconstructed infrasound signals,an ARIMA model was constructed to forecast the trend of debris flow infrasound signal.Results reveal that the Hilbert transform effectively separated noise,and the predictive model’s results fell within a 95%confidence interval.The Mean Absolute Percentage Error(MAPE)across four experiments were 4.87%,5.23%,5.32%and 4.47%,respectively,showing a satisfactory accuracy and providing an alternative for predicting debris flow by infrasound signals.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A20153,41941018,52074258,41807250,42177140)the Key Research and Development Project of Hubei Province,China(Grant No.2021BCA133).
文摘Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engineering-geological environments.There-fore,a high-performance predictive model for tunnel squeezing is necessary.A superior ensemble classifier is put forward in this study,which is composed of four individual classifiers(gradient boosting classifier,extra-trees classifier,AdaBoost classifier,and Logistic regression classifier)and two optimization algorithms(Bayesian optimization(BO)and sparrow search algorithm(SSA)).The training database covers five parameters:tunnel depth(H),rock tunneling quality index(Q),tunnel diameter(D),support stiffness(K),and strength stress ratio(SSR),about which the basic information is accessible at the early design phases.However,the dataset compiled from the literature is insufficient.Thus,the ten proposed methods are used to replace the missing values.During the model training pro-cess,BO shows its strong ability to optimize seventeen hyperparameters.When applied to tune the classifiers’weights,SSA achieves a fast and efficient performance.The novel Shapley Additive Explanations–LightGBM method indicates that the K is the most important input feature,followed by SSR,Q,H,and D,respectively.The ensemble classifier is then validated using the test set and additional his-torical case projects.The validation shows that the model can achieve an accuracy of 98%(i.e.,the error rate is 2%)on the test set,higher than those achieved by previous prediction models.Moreover,the predicted probability could provide warning information for timely support measures.Finally,the application results are illustrated through tests on the tunnel sections that have not yet been excavated in the line of the Sichuan–Tibet railway project.The applied predictive tendencies and laws are in line with the practical experience.In sum-mary,the proposed model’s prediction results are reasonable,and