A three-dimensional numerical investigation of cross-flow past four circular cylinders in a diamond arrangement at Reynolds number of 200 is carried out.With the spacing ratios(L /D)ranging from 1.2 to 5.0,the flow ...A three-dimensional numerical investigation of cross-flow past four circular cylinders in a diamond arrangement at Reynolds number of 200 is carried out.With the spacing ratios(L /D)ranging from 1.2 to 5.0,the flow patterns can be classified into three basic regimes.The critical spacing ratio for the transition from narrow gap flow pattern to vortex impingement flow pattern around the cylinders is found to beL /D=3.0,while a single bluff-body flow pattern is observed atL /D=1.2.The relationship between the three-dimensional flow patterns and force characteristics around the four cylinders shows that the variation of forces and Strouhal numbers againstL /D are generally governed by these three kinds of flow patterns.It is concluded that the spacing ratio has important effects on the development of the free shear layers about the cylinders and hence has significant effects on the force and pressure characteristics of the four cylinders with different spacing ratios.展开更多
The sowing pattern has an important impact on light interception efficiency in maize by determining the spatial distribution of leaves within the canopy.Leaves orientation is an important architectural trait determini...The sowing pattern has an important impact on light interception efficiency in maize by determining the spatial distribution of leaves within the canopy.Leaves orientation is an important architectural trait determining maize canopies light interception.Previous studies have indicated how maize genotypes may adapt leaves orientation to avoid mutual shading with neighboring plants as a plastic response to intraspecific competition.The goal of the present study is 2-fold:firstly,to propose and validate an automatic algorithm(Automatic Leaf Azimuth Estimation from Midrib detection[ALAEM])based on leaves midrib detection in vertical red green blue(RGB)images to describe leaves orientation at the canopy level;and secondly,to describe genotypic and environmental differences in leaves orientation in a panel of 5 maize hybrids sowing at 2 densities(6 and 12 plants.m^(−2))and 2 row spacing(0.4 and 0.8 m)over 2 different sites in southern France.The ALAEM algorithm was validated against in situ annotations of leaves orientation,showing a satisfactory agreement(root mean square[RMSE]error=0.1,R^(2)=0.35)in the proportion of leaves oriented perpendicular to rows direction across sowing patterns,genotypes,and sites.The results from ALAEM permitted to identify significant differences in leaves orientation associated to leaves intraspecific competition.In both experiments,a progressive increase in the proportion of leaves oriented perpendicular to the row is observed when the rectangularity of the sowing pattern increases from 1(6 plants.m^(−2),0.4 m row spacing)towards 8(12 plants.m^(−2),0.8 m row spacing).Significant differences among the 5 cultivars were found,with 2 hybrids exhibiting,systematically,a more plastic behavior with a significantly higher proportion of leaves oriented perpendicularly to avoid overlapping with neighbor plants at high rectangularity.Differences in leaves orientation were also found between experiments in a squared sowing pattern(6 plants.m^(−2),0.4 m row spacing),indicating a possible cont展开更多
A series of theoretical explorations and field tests have been carried out to efficiently develop the Mahu tight conglomerate oilfield in the Junggar Basin.Concepts of steered-by-edge fracturing and proactive fracturi...A series of theoretical explorations and field tests have been carried out to efficiently develop the Mahu tight conglomerate oilfield in the Junggar Basin.Concepts of steered-by-edge fracturing and proactive fracturing interference were proposed.A series of innovative technologies were developed and implemented including optimization of 3-D staggered well pattern,proactive control and utilization of spatial stress field,and synergetic integration of multiple elements.Different from shale,the unique rock fabric and strong heterogeneities of tight conglomerate formation are favorable factors for forming complex fractures,small space well pattern can proactively control and make use of interwell interference to increase the complexity of fracture network,and the"optimum-size and distribution"hydraulic fracturing can be achieved through synergetic optimization.During pilot phase of this field,both depletion with hydraulically fractured vertical wells and volume fracturing in horizontal wells were tested after water injection through vertical wells,then the multi-stage fracturing with horizontal well was taken as the primary development technology.A series of engineering methods were tested,and key development parameters were evaluated such as well spacing,lateral length,fractures spacing,fracturing size,and fracturing operation process.According to geoengineering approach,the 100 m/150 m tridimensional tight-spacing staggered development method was established with systematic integration of big well clusters,multiple stacked pay zones,small well spacing,long lateral length,fine perforation clustering,zipper fracturing and factory operation.According to half-year production performance,100 m/150 m small spacing wells outperformed 500 m/400 m/300 m spacing wells.Its average estimated ultimate recovery(EUR)of wells was identical with those best wells from large-spacing area.Compared with the overall performance of Mahu oilfield,the drainage efficiency and estimated recovery factor of this pilot were significantly boost展开更多
基金Project supported by Open Research Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (Grant No. DMETKF2009016)the Fundamental Research Funds for the Central Universities (Grant No. 2010-Ia-030)
文摘A three-dimensional numerical investigation of cross-flow past four circular cylinders in a diamond arrangement at Reynolds number of 200 is carried out.With the spacing ratios(L /D)ranging from 1.2 to 5.0,the flow patterns can be classified into three basic regimes.The critical spacing ratio for the transition from narrow gap flow pattern to vortex impingement flow pattern around the cylinders is found to beL /D=3.0,while a single bluff-body flow pattern is observed atL /D=1.2.The relationship between the three-dimensional flow patterns and force characteristics around the four cylinders shows that the variation of forces and Strouhal numbers againstL /D are generally governed by these three kinds of flow patterns.It is concluded that the spacing ratio has important effects on the development of the free shear layers about the cylinders and hence has significant effects on the force and pressure characteristics of the four cylinders with different spacing ratios.
基金supported by several projects including ANR PHENOME(Programme d’investissement d’avenir ANR11INBS0012)#Digitag(PIA Institut Convergences Agriculture Numérique ANR16CONV0004)CASDAR LITERAL.
文摘The sowing pattern has an important impact on light interception efficiency in maize by determining the spatial distribution of leaves within the canopy.Leaves orientation is an important architectural trait determining maize canopies light interception.Previous studies have indicated how maize genotypes may adapt leaves orientation to avoid mutual shading with neighboring plants as a plastic response to intraspecific competition.The goal of the present study is 2-fold:firstly,to propose and validate an automatic algorithm(Automatic Leaf Azimuth Estimation from Midrib detection[ALAEM])based on leaves midrib detection in vertical red green blue(RGB)images to describe leaves orientation at the canopy level;and secondly,to describe genotypic and environmental differences in leaves orientation in a panel of 5 maize hybrids sowing at 2 densities(6 and 12 plants.m^(−2))and 2 row spacing(0.4 and 0.8 m)over 2 different sites in southern France.The ALAEM algorithm was validated against in situ annotations of leaves orientation,showing a satisfactory agreement(root mean square[RMSE]error=0.1,R^(2)=0.35)in the proportion of leaves oriented perpendicular to rows direction across sowing patterns,genotypes,and sites.The results from ALAEM permitted to identify significant differences in leaves orientation associated to leaves intraspecific competition.In both experiments,a progressive increase in the proportion of leaves oriented perpendicular to the row is observed when the rectangularity of the sowing pattern increases from 1(6 plants.m^(−2),0.4 m row spacing)towards 8(12 plants.m^(−2),0.8 m row spacing).Significant differences among the 5 cultivars were found,with 2 hybrids exhibiting,systematically,a more plastic behavior with a significantly higher proportion of leaves oriented perpendicularly to avoid overlapping with neighbor plants at high rectangularity.Differences in leaves orientation were also found between experiments in a squared sowing pattern(6 plants.m^(−2),0.4 m row spacing),indicating a possible cont
基金Supported by the China National Science and Technology Major Project(2017ZX05070)PetroChina Science and Technology Major Project(2017E-04)PetroChina–China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-01)
文摘A series of theoretical explorations and field tests have been carried out to efficiently develop the Mahu tight conglomerate oilfield in the Junggar Basin.Concepts of steered-by-edge fracturing and proactive fracturing interference were proposed.A series of innovative technologies were developed and implemented including optimization of 3-D staggered well pattern,proactive control and utilization of spatial stress field,and synergetic integration of multiple elements.Different from shale,the unique rock fabric and strong heterogeneities of tight conglomerate formation are favorable factors for forming complex fractures,small space well pattern can proactively control and make use of interwell interference to increase the complexity of fracture network,and the"optimum-size and distribution"hydraulic fracturing can be achieved through synergetic optimization.During pilot phase of this field,both depletion with hydraulically fractured vertical wells and volume fracturing in horizontal wells were tested after water injection through vertical wells,then the multi-stage fracturing with horizontal well was taken as the primary development technology.A series of engineering methods were tested,and key development parameters were evaluated such as well spacing,lateral length,fractures spacing,fracturing size,and fracturing operation process.According to geoengineering approach,the 100 m/150 m tridimensional tight-spacing staggered development method was established with systematic integration of big well clusters,multiple stacked pay zones,small well spacing,long lateral length,fine perforation clustering,zipper fracturing and factory operation.According to half-year production performance,100 m/150 m small spacing wells outperformed 500 m/400 m/300 m spacing wells.Its average estimated ultimate recovery(EUR)of wells was identical with those best wells from large-spacing area.Compared with the overall performance of Mahu oilfield,the drainage efficiency and estimated recovery factor of this pilot were significantly boost