针对LTE下行多输入多输出正交频分多址(MIMO-OFDM)系统中的天线间干扰和多径干扰问题,提出一种低复杂度的迭代均衡算法。该算法在接收端通过预编码矩阵将发射信号扩展到所有子载波上,从而减少部分子载波深衰落对扩展前原始发射信号的影...针对LTE下行多输入多输出正交频分多址(MIMO-OFDM)系统中的天线间干扰和多径干扰问题,提出一种低复杂度的迭代均衡算法。该算法在接收端通过预编码矩阵将发射信号扩展到所有子载波上,从而减少部分子载波深衰落对扩展前原始发射信号的影响。算法在接收端引入最小均方差误差排序QR分解(MMSE-SQRD)软干扰消除均衡算法,一方面避免传统基于最小均方误差(MMSE)并行软干扰消除均衡算法中矩阵求逆运算,进而降低了算法复杂度,另一方面利用信道排列,优先检测信噪比最大的传输符号进而提高检测准确性。同时通过预编码对重构信号进行预处理,进而缓解在迭代干扰消除过程中的误差传播。仿真结果表明:在4发4收场景下,误码率为10-5时,所提算法信噪比改善约0.7 d B。展开更多
MIMO检测是LTE-A系统中的一个重要环节,在实际应用中,MIMO信号检测算法的选用需要在复杂度和性能之间进行合理折中。文中针对ML(Maximum Likelihood)算法复杂度高的问题,提出了一种改进的算法(ML-SQRD),主要是缩小搜寻空间,尽可能多地...MIMO检测是LTE-A系统中的一个重要环节,在实际应用中,MIMO信号检测算法的选用需要在复杂度和性能之间进行合理折中。文中针对ML(Maximum Likelihood)算法复杂度高的问题,提出了一种改进的算法(ML-SQRD),主要是缩小搜寻空间,尽可能多地考虑可能的发送符号集,并在分析过程中结合了SQRD(Sort QR Decomposition)算法。经仿真和复杂度分析,改进算法的性能接近ML算法,且复杂度低于ML算法,可应用于未来5G通信中大规模MIMO检测。展开更多
文摘针对LTE下行多输入多输出正交频分多址(MIMO-OFDM)系统中的天线间干扰和多径干扰问题,提出一种低复杂度的迭代均衡算法。该算法在接收端通过预编码矩阵将发射信号扩展到所有子载波上,从而减少部分子载波深衰落对扩展前原始发射信号的影响。算法在接收端引入最小均方差误差排序QR分解(MMSE-SQRD)软干扰消除均衡算法,一方面避免传统基于最小均方误差(MMSE)并行软干扰消除均衡算法中矩阵求逆运算,进而降低了算法复杂度,另一方面利用信道排列,优先检测信噪比最大的传输符号进而提高检测准确性。同时通过预编码对重构信号进行预处理,进而缓解在迭代干扰消除过程中的误差传播。仿真结果表明:在4发4收场景下,误码率为10-5时,所提算法信噪比改善约0.7 d B。
文摘MIMO检测是LTE-A系统中的一个重要环节,在实际应用中,MIMO信号检测算法的选用需要在复杂度和性能之间进行合理折中。文中针对ML(Maximum Likelihood)算法复杂度高的问题,提出了一种改进的算法(ML-SQRD),主要是缩小搜寻空间,尽可能多地考虑可能的发送符号集,并在分析过程中结合了SQRD(Sort QR Decomposition)算法。经仿真和复杂度分析,改进算法的性能接近ML算法,且复杂度低于ML算法,可应用于未来5G通信中大规模MIMO检测。